В Канаде, в 150 милях от Оттавы, намечено построить первую канадскую атомную электростанцию. Схема реактора электростанции (реактор NPD) приведена на рис. 78.
Рис. 78.Схема реактора NPD канадской атомной электростанции: 1 — мостовой кран; 2 — каналы для горючего; 3 — манипулятор; 4 — парогенератор; 5 — насос для тяжелой воды; 6 — реактор; 7 — бетонная защита
В качестве замедлителя и теплоносителя будет применена тяжелая вода под давлением. На территории, занимаемой станцией, будут размещены реактор с парогенератором и насосом, перерабатывающий ядерное горючее завод и турбогенераторы. Реактор и парогенераторы помешаются в бетонированном котловане. Отдельная зашита ставится между реактором и парогенератором. Активная зона реактора заключена в цилиндрический сосуд с полусферическим дном. Тяжелая вода используется в реакторе в двух контурах: в контуре теплоносителя и контуре замедлителя. Теплоноситель из реактора поступает в парогенераторы, где отдает свое тепло, образуя сухой насыщенный пар. Замедлитель проходит через специальный теплообменник, где он охлаждается обычной водой. В реакторе NPD не будет регулирующих стержней. Реактивность аппарата будет поддерживаться на определенном уровне с помощью изменения количества замедлителя в системе. Строительство атомной станции в Канаде должно быть завершено в 1958 году.
В Соединенных Штатах Америки впервые преобразование ядерной энергии в электрическую было произведено на уже описанном в предыдущей главе опытном размножающем реакторе EBR. Основной целью сооружения этого реактора было экспериментальное исследование принципов системы размножающего реактора на быстрых нейтронах. Поэтому не было обращено внимание на получение достаточно высокого коэффициента полезного действия установки. Этот коэффициент был равен приблизительно 17 процентам, и от реактора с тепловой мощностью 1400 киловатт получалось не больше 200 киловатт электрической энергии. Схема реактора EBR приведена на рис. 79.
Рис. 79.Схема реактора EBR:
1 — активная зона из делящегося материала; 2 — зона воспроизводства; 3 — электромагнитные насосы
Тепло от натриевого теплоносителя передается в теплообменнике вторичному, тоже натриевому, теплоносителю. Вторичный теплоноситель поступает в парогенератор, где образуется сухой пар при давлении 28 атмосфер. Циркуляция металла в первичном и вторичном контурах осуществляется с помощью специальных электромагнитных насосов. Общее расположение аппаратуры размножающего реактора EBR показано на схеме рис. 80.
Рис. 80.Расположение аппаратуры реактора EBR
Основываясь на опыте работы реактора EBR, американцы строят второй экспериментальный размножающий реактор — EBR-II тепловой мощностью 60 тысяч киловатт, который должен быть закончен в 1958 году. Как видно из рис. 81, весь реактор вместе с электромагнитным насосом первого контура, первичным теплообменником и хранилищем для тепловыделяющих элементов (на рисунке не показано) погружается в большой бак, наполненный жидким натрием.
Рис. 81.Схема реактора EBR-II:
1 — первичный теплообменник; 2 — нейтронная защита; 3 — активная зона; 4 — герметический бак с натрием; 5 — зона воспроизводства; 6 — регулирующий стержень; 7 — защита от гамма-излучения; 8 — объединенный униполярный генератор и электромагнитный насос
Ни при каких авариях уровень жидкого натрия не может падать ниже верхнего уровня активной зоны реактора. В случае аварии большая теплоемкость натрия, заполняющего бак, позволяет поглотить большое количество тепла и охладить реактор естественной конвекцией. В случае остановки реактора топливные тепловыделяющие элементы могут немедленно заменяться, так как во время перемещения из активной зоны реактора в хранилище они все время охлаждаются жидким натрием. Таким образом, гарантируется удаление значительного количества тепла, выделяющегося при радиоактивном распаде продуктов деления, содержащихся в заменяемом топливном элементе. Хотя промежуточный теплообменник и расположен очень близко к реактору, но благодаря наличию защиты от нейтронов вокруг реактора натрий во вторичном контуре не становится радиоактивным. Таким образом, единственной частью установки, требующей защиты, является сам бак с натрием. Предполагается, что реактор EBR-II будет объединен с установкой для металлургической обработки старых топливных элементов. Установлено, что 90 процентов продуктов деления выходят в шлак при расплавлении ядерного горючего. Поэтому когда старые топливные элементы будут освобождены от оболочки и расплавлены, то после удаления шлака в топливе останется всего 10 процентов примесей. Эти примеси при работе реактора на быстрых нейтронах не так вредны, поскольку они слабо поглощают быстрые нейтроны. Когда вместо выгоревшего делящегося материала будет добавлено соответствующее количество плутония, из полученной смеси можно изготовить новые топливные элементы для использования в реакторе.
Читать дальше