Рис. 10.Пороховой ракетный двигатель:
1 — корпус ракеты; 2 — камера сгорания; 3 — сопло двигателя; 4 — заряд пороха (пороховые трубки); 5 — диафрагма; 6 — передний воспламенитель; 7 — задний воспламенитель; 8 — отверстия решетки
Пороховой ракетный двигатель (рис. 10) является самым простым по своему устройству из всех известных нам типов ракетных двигателей. Основными конструктивными элементами его являются: корпус 1 , камера сгорания 2 , сопло 3 , заряд пороха 4 и диафрагма 5 . Так как, в отличие от других реактивных двигателей, в ПРД весь запас топлива сосредоточен в самой камере сгорания, то и размеры ее определяются количеством содержащегося в ней пороха, необходимого для обеспечения расчетной дальности полета ракеты. Сопло 3 , как и в любой ракете, предназначено для преобразования тепловой энергии пороховых газов в кинетическую энергию, которая определяет величину реактивной силы. Заряд пороха 4 состоит из пороховых трубок, или шашек, могущих иметь различную форму и плотность. При выборе формы, плотности и размеров пороховых шашек руководствуются необходимостью обеспечить более продолжительное их горение и постоянство давления в камере сгорания при переменном ее объеме. Диафрагма с отверстиями 5 удерживает пороховые шашки в камере в заданном положении. Передний воспламенитель 6 обеспечивает условия равномерного и надежного воспламенения всего порохового заряда, а задний воспламенитель 7 — начало воспламенения пороха. Дно камеры сгорания (отверстия решетки) 8 является местом приложения основной составляющей тяги.
Существуют два основных типа пороховых зарядов: с горением по части поверхности и по всей поверхности. В зарядах первого типа часть внешней поверхности покрывается веществом, препятствующим горению; вследствие этого горение такого заряда может происходить только по поверхности, не покрытой этим веществом. Заряды с горением по части поверхности горят, как сигарета, от одного конца до другого. Двигатели с этими зарядами обычно имеют бóльшую длительность работы, чем с зарядами второго типа. Данные двигателей с зарядами обоих типов приведены в табл. 2. Некоторые заряды имеют частично ограниченную поверхность горения; в этих случаях химический состав, препятствующий горению, наносится лишь на некоторые грани заряда.
Таблица 2 [15]
Сравнение основных типов пороховых ракетных двигателей |
Характеристика |
Заряд с горением по всей поверхности |
Заряд с горением по части поверхности |
Тяга в кг |
От 200 до 27 000 |
От 50 до 2500 |
Продолжительность горения в сек |
От 0,05 до 10 |
От 3 до 100 |
Полный импульс в кг/сек |
От 10 до 90 000 |
От 700 до 35 000 |
Область применения. |
Артиллерийские, авиационные, зенитные, ракетные снаряды, планирующие бомбы и сигнальныеракеты и т. д. |
Стартовые двигатели, бустерные двигатели, высотные ракеты и последняя ступень для запуска искусственного спутника Земли |
Вес в кг |
От 1,3 до 900 |
От 9 до 600 |
В процессе горения порохового заряда в камере сгорания давление возрастает от 100 до нескольких сотен атмосфер, а температура при этом превышает 2000℃. Поэтому камеру сгорания ПРД рассчитывают на высокие давления, в результате чего растут весовые характеристики двигателя, так как стенки ее приходится делать весьма прочными.
Растрескивание или разламывание пороховых шашек в процессе горения влечет за собой увеличение поверхности горения, повышение газообразования, а следовательно, и резкое местное возрастание давления, что может привести к взрыву камеры сгорания.
Нитроглицериновые пороха, применяемые в ПРД, обеспечивают скорость истечения газов порядка 2700 м/сек.
Порох в камере сгорания сгорает за время от нескольких десятых долей секунды до 100 секунд.
Поверхность горения является важнейшим фактором всех пороховых двигателей, обусловливающим величину их тяги. Так как тяга двигателя равна произведению массы вытекающих в секунду газов на скорость их истечения, то получить большую тягу, очевидно, можно, увеличив вес вытекающих в секунду газов. В пороховом двигателе этого можно достигнуть увеличением поверхности горения. В свою очередь небольшую тягу при соответственно большей продолжительности работы можно получить, если поверхность горения мала. При данной величине камеры сгорания изменение поверхности горения можно осуществить только путем изменения геометрической формы и расположения пороховых зарядов. На рис. 11 показано несколько форм пороховых шашек ракетного заряда, применяя которые можно в известных пределах регулировать закон образования газов по времени.
Читать дальше