Одна из труднейших и нерешенных задач теоретической физики - связь гравитационных и электродинамических явлений.
Если такая связь существует, то в результате решения каких-то еще не найденных уравнений будет получено безразмерное число, дающее соотношение между гравитационной постоянной G и величинами, характеризующими электричество, такими, как скорость света с, заряд электрона е и его масса m. Если существенны квантовые явления, в задачу может войти еще постоянная Планка h , которая, как мы видели, характеризует скачки энергии электромагнитных колебаний. Зная размерности величин G, с, е, m, h, нетрудно убедиться, что из этих величин можно составить только две независимые безразмерные комбинации:
Первая из них хорошо известна и называется «постоянной тонкой структуры». Подстановка числовых значений дает \alpha = 1/137; \ksi = 5\cdot 1044. Может ли такое большое
число, как \ksi, возникнуть в результате решения каких-нибудь разумных уравнений? Безразмерные числа, которые получаются в физических задачах, обычно имеют порядок нескольких единиц или долей единицы. Поэтому мы вправе ожидать, что величина \ksi войдет в задачу в такой форме, чтобы в результате получилось число порядка единицы. Пока мы применяли здравый смысл. Теперь нужно сделать небольшой интуитивный логический скачок.
Правдоподобно, что в теорию войдет натуральный логарифм \ksi (ln(\ksi) ~100) в комбинации \alpha ln(\ksi) ~ 1. В этом соотношении уже нет больших чисел. Знание такого соотношения облегчает поиски решения.
Поправки к электродинамике в сильном поле
Это более сложная задача, которая даст некоторое представление о важном методе современной физики - графиках Фейнмана. Метод графиков или диаграмм совершил революцию в теоретических расчетах. Суть его состоит в том, что явления изображаются в виде рисунков, которые расшифровываются в конце работы. Даже без расшифровки, только как иллюстрация процессов, эти графики многое разъясняют. Например, такой рисунок означает рождение и уничтожение пары электрон -
позитрон фотоном, если под пунктиром понимать квант, а под линиями с разными стрелками - электрон и позитрон. Точки на графике означают акт взаимодействия кванта с электроном. Каждый акт вносит множитель е, а весь график показывает, как изменяется закон распространения электромагнитного поля из-за временного рождения пары электрон - позитрон.
Вакуум представляет собой сложную среду, в которой могут виртуально - на время - рождаться пары частиц - античастиц. Особенно ясно это станет после прочтения следующей главы. Поэтому нет никаких оснований считать, что уравнения Максвелла останутся линейными для сколь угодно сильных полей. Оценим порядок величины поправок к этим уравнениям.
Поправку к уравнениям Максвелла лучше всего
нивать по изменению безразмерной величины - диэлектрической постоянной, скажем, в электрическом поле.
Отчего изменяется диэлектрическая постоянная, определяющая скорость распространения света в вакууме в присутствии внешнего поля? Ведь внешнее поле на свет не действует. Механизм состоит в том, что свет на время рождает электрон-позитронную пару, а эти частицы уже взаимодействуют с внешним полем.
На рисунке процесс выглядит так:
Этот рисунок показывает, как изменяется во внешнем поле закон распространения фотона.
Квант на время рождает пару, а электрон и позитрон взаимодействуют с внешним полем (волнистая линия). Каждое включение внешнего поля вносит множитель еЕ, где Е - напряженность внешнего поля.
Теперь нетрудно составить безразмерную комбинацию, дающую поправку к диэлектрической постоянной. Сначала составим безразмерную комбинацию, содержащую поле Е. Так как еЕ имеет размерность энергии, деленной на длину, а величина h/mc - размерность длины, то выражение
безразмерно.
Теперь, глядя на рисунок, нетрудно догадаться, как должна выглядеть поправка к диэлектрической постоянной:
Читать дальше