Самый решительный удар по закону зеркальной симметрии был нанесен в 1956 году блестящим опытом по изучению р-распада кобальта, поставленным группой американских физиков (Цзинь-сян By и др.). Кобальт
при низкой температуре был помещен в сильное магнитное поле. При этом ядра поляризуются - их спины (о спине мы еще поговорим) ориентируются вдоль магнитного поля. При \beta-распаде из ядер кобальта вылетают электроны и антинейтрино. Обнаружилось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля. Между тем, по закону зеркальной симметрии острые и тупые углы должны были бы встречаться одинаково часто.
Действительно, посмотрим на отражение этой установки в зеркале. Магнитное поле изменит свое направление по отношению к отраженным предметам на обратное, как винт, который при отражении из правого превращается в левый. Ведь направление магнитного поля определяется из направления тока в катушке, создающей поле, как раз по правилу винта. Поэтому тупые углы к направлению магнитного поля в зеркале превратятся в острые, следовательно, зеркальное изображение опыта выглядит не так, как сам опыт, в прямом противоречии с законом зеркальной симметрии.
Наступил период смятения. Физики стали сомневаться и в других свойствах симметрии нашего пространства. Как казалось в то время, выход из тупика нашли в 1957 году советский физик Л. Д. Ландау и американские Цзун-дао Ли и Чжень-нин Янг. Они предположили, что частицы (электроны, нейтрино, нуклоны), участвующие в р-распаде, зеркально асимметричны; симметрия восстанавливается, только если перейти от частиц к античастицам. Теперь при отражении в зеркале вся картина изменится - не только тупые углы перейдут в острые, но и частицы не перейдут семи в себя. Таким образом, зеркальная симметрия пространства не нарушается, а асимметрия слабого взаимодействия определяется асимметрией участвующих частиц. Существование в нашем мире асимметричных частиц не противоречит симметрии пространства, так же как ей не противоречит асимметрия живых объектов.
Зарядово-зеркальная симметрия. Антимиры
До этих опытов физики считали, что законы природы не изменяются, если все заряды заменить на обратные. Это свойство законов природы называется зарядовой симметрией.
Все уравнения физики наряду с частицами допускают существование античастиц. И такие античастицы (позитрон, антипротон, антинейтрон и т. д.) действительно были обнаружены. Подобно ядру любого химического элемента, состоящему из протонов и нейтронов, можно составить ядро соответствующего антиэлемента из антипротонов и антинейтронов. Если к такому антиядру, заряженному отрицательно, добавить позитроны, то получится антиатом, а из антиатомов можно образовать антивещество. Силы между античастицами равны силам между частицами, поэтому антивещество будет обладать теми же свойствами, что и вещество.
Теперь, для того чтобы учесть свойства слабого взаимодействия, закон зарядовой симметрии пришлось уточнить - природа обладает не зарядовой, а зарядово-зер-калыюй симметрией. Никакие законы природы не изменятся, если все заряды в мире изменить на обратные и одновременно произвести зеркальное отражение.
Антимир отличается от нашего мира не только знаком зарядов. В таком мире изменяется понятие правого и левого: антимир - зеркальное отражение нашего мира. Люди этого мира, если бы они проходили ту же историческую эволюцию, что и мы, имели бы сердце с правой стороны. Более сильная рука у них была бы левая. Замечательный американский физик Ричард Фейнман в своих лекциях говорит: «Если в космическом пространстве вы встретите корабль, идущий из далекого мира, н космонавт протянет вам левую руку, - берегитесь, возможно, он состоит из антивещества!»
Существуют ли в нашей Вселенной антимиры, то есть
области антивещества? Этот вопрос пока остается без окончательного ответа, хотя большинство астрофизиков полагает, что антимиров нет. Если бы они существовали, то на границах вещества и антивещества происходила бы аннигиляция электронов и позитронов, то есть превращение электрона и позитрона в два кванта; энергия каждого из квантов должна равняться энергии покоя электрона (0,5 МэВ). Во Вселенной должны были бы присутствовать в большом количестве кванты с энергией 0,5 МэВ. Между тем таких квантов нет.
Читать дальше