Замечательный голландский физик Хендрик Антон Лоренц в 1904 году убедился, что таким свойством обладают и электродинамические явления, причем не только для медленно движущихся тел, но и для тел, движущихся со скоростью, близкой к скорости света. При этом выяснилось, что скорость заряженных тел не может превысить скорости света.
Анри Пуанкаре в работе, оказавшей огромное влияние на теоретическую физику, показал, что результаты Лоренца означают инвариантность уравнений электродинамики относительно поворотов в пространстве-времени, то есть в пространстве, в котором, кроме трех обычных координат, есть еще одна - временная.
Но самый важный шаг сделал Эйнштейн, обнаружив, что симметрия пространства-времени - всеобщая, что не только электродинамика, но все явления природы - физические, химические, биологические - не изменяются при поворотах. Ему удалось это сделать после глубокого и не сразу понятого современниками пересмотра наших привычных представлений о пространстве и времени.
Слово «поворот» надо было бы заключить в кавычки - это не обычный поворот, при котором сохраняют
ся расстояния между точками; например, расстояние от какой-либо точки до начала координат.
В четырехмерном пространстве, о котором мы только что говорили, по четвертой оси откладывается время t, помноженное на скорость света с, и «поворот» соответствует неизменности не расстояния до начала координат, а величины l2 = x2+y2+z2-c2t2 = хl2+yl2+ + zl2-c2ti2, где x, у, z; хl yl,zl - координаты до и после поворота. Такой «поворот» обеспечивает постоянство скорости распространения света в разных системах координат.
Таким образом, все симметрии, которые мы до сих пор рассматривали, объединяются в одну, всеобщую -¦ все явления природы инвариантны относительно сдвигов, поворотов и отражений в четырехмерном пространстве-времени. Инвариантность относительно сдвигов и поворотов в обычном пространстве получается как частный случай, когда сдвиг не изменяет отсчета времени или когда вращение происходит вокруг временной оси.
Нужно пояснить, что означает инвариантность явлений природы относительно поворотов. Все физические величины можно классифицировать по тому, как они изменяются при повороте. Есть величины, которые не изменяются вовсе, - они называются «скалярами». Другие - векторы - ведут себя как отрезок, проведенный из начала координат в какую-либо точку пространства. При повороте системы координат длина вектора не изменяется, а его проекции на оси координат изменяются по известному закону. Есть величины, изменяющиеся более сложно, например как произведение двух векторов. Они называются «тензорными».
Кроме векторных и тензорных величин, есть и другие, которые при поворотах тоже изменяются заданным образом. Я не сразу решился их назвать, боясь испугать читателя незнакомым словом, - они называются «спинорами». Из спиноров можно образовать квадратичную комбинацию, которая изменяется как вектор; или другую - скалярную, не изменяющуюся при поворотах. Волновая функция электрона изменяется при поворотах как спинор, или, кратко, - она есть спинор. Пока достаточно знать само слово, не раскрывая его математического смысла. Неизменность законов или уравнений означает, что во всех слагаемых уравнения и в левой и в правой частях стоят величины, одинаково изменяющиеся при поворотах.
Так же как бессмысленно сравнивать величины разной размерности, скажем, время и длину, массу и скорость, - невозможно и равенство, в котором слева - скаляр, а справа - вектор.
Суть симметрии именно в этом делении величин на скаляры, векторы, тензоры, спиноры… Ясно, насколько легче отыскать уравнение, если требовать, чтобы все слагаемые одинаково изменялись.
Мы увидим в следующей главе, как размерные оценки позволяют находить неожиданные физические соотношения. Классификация величин по их изменению при поворотах или при какой-либо другой операции - это следующий шаг в сторону глубины понимания природы; жаль, что школьный курс ограничивается лишь первым шагом - размерностью.
Симметриям, которые мы до сих пор рассматривали, соответствовали операции, не зависящие от пространственной точки. Во всем пространстве происходит одинаковый сдвиг или поворот. Такие симметрии называются «глобальными». Можно было бы попытаться найти такие уравнения, так записать законы природы, чтобы они не изменялись не только при глобальных сдвигах и поворотах, но при сдвигах и поворотах различных в разных точках. Такая симметрия называется «локальной».
Читать дальше