1) Имеется ли предел намагниченности стального бруска?
2) «Полюсы» намагниченного бруска не расположены точно на его краях и не распределены точно по торцевой плоскости. Объясните, почему.
3) Нагревание магнита приводит к его размагничиванию. Объясните, по какой причине.
4) Удары молотком по магниту приводят к его размагничиванию. Дайте объяснение.
5) В некоторых условиях удары по стальному бруску могут намагнитить его, даже если молоток сделан из немагнитного материала. В каких условиях это возможно? Объясните.
6) Когда намагниченные бруски хранятся в коробке, их располагают таким образом, чтобы концы замыкались «башмаком». Могут ли эти «башмаки» действительно помочь сохранить магниты в намагниченном состоянии? Из какого материала они должны быть изготовлены?
7) Подковообразные магниты также снабжают «башмаками». Нарисуйте схему, иллюстрирующую роль последних.
8) Экспериментатор считает, что намагнитил стальное кольцо, хотя не в состоянии обнаружить полюсов, а около кольца нет внешнего магнитного поля. Имеется ли какой-нибудь разумный смысл в утверждении, что кольцо «намагничено»? Объясните.
9) Если на предыдущий вопрос вы ответили утвердительно, то покажите, как можно проверить намагниченность кольца.
10) Брусок из стали или мягкого железа помещен в катушку с переменным током. Замечено, что брусок нагрелся. Такое нагревание возникает благодаря ряду эффектов, один из которых заключается в перемагничивании бруска магнитным полем переменного тока. Какое ожидается различие в нагревании мягкого железа и твердой стали?
11) Магнит помещен внутрь катушки с переменным током, и сила тока медленно падает до нуля. Объясните, почему таким способом можно размагнитить магнит. Ответ проиллюстрируйте рисунком или чертежом.
Фиг. 159. Демонстрационный прибор для изучения намагничивания железных или стальных образцов.
Образец помещается в намагничивающую катушку А , через которую пропускается электрический ток. В процессе намагничивания образец создает магнитное поле, которое отклоняет электронный луч вверх или вниз. (Катушка А также создает внешнее магнитное поле. Чтобы предотвратить действие этого поля на электронный луч, с другой стороны электронно-лучевой трубки помещается «компенсирующая» катушка В , через которую проходит тот же самый ток. Магнитное поле этой катушки нейтрализует поле катушки А в области, где проходит электронный луч.)
Перемещение луча вверх и вниз позволяет следить за изменением намагниченности образца. Электронный луч отклоняется также вправо и влево электрическим полем между пластинками Р 1 и Р 2, связанными с сопротивлением R , через которое проходит намагничивающий ток. Согласно закону Ома, разность потенциалов на его концах изменяется в соответствии с силой тока. Так же меняется и поле, действующее на образец. Поэтому величина горизонтального отклонения луча является мерой напряженности намагничивающего поля. Таким образом, электронный луч вычерчивает график намагничивания {вертикальное отклонение) в зависимости от величины намагничивающего поля (горизонтальное отклонение).
Если катушка питается постоянным током, который постепенно увеличивают с помощью реостата, то возрастание намагниченности образца можно заметить по смещения светящегося пятна на экране трубки. Если же катушка включена в сеть переменного тока, то достаточно держать реостат в одном определенном положении. Во время каждого цикла намагничивания электронный луч вычерчивает одинаковые кривые, и это происходит так быстро и столь часто, что мы видим на экране неподвижное изображение.
Экспериментальное изучение стадий намагничивания
Мы можем исследовать, как намагничивается металлический брусок, поместив его внутрь соленоида и постепенно увеличивая ток в обмотке. Будем считать, что напряженность магнитного поля внутри соленоида прямо пропорциональна току (почему это так, объясняется ниже), так что величину силы тока можно принять за меру напряженности намагничивающего поля. Величину же намагниченности самого бруска будем измерять по производимому им действию на небольшую компасную стрелку или пучок электронов в электронно-лучевой (осциллографической) трубке. Мы можем плавно менять ток с помощью реостата или включить соленоид в сеть переменного тока, который 60 раз в секунду будет менять намагниченность бруска. Подадим на вертикальные пластины осциллографической трубки электрическое поле , пропорциональное величине намагничивающего тока, которое развернет электронный луч горизонтально 60 раз в секунду, а намагничиваемый брусок расположим таким образом, чтобы его магнитное поле в то же самое время отклоняло бы электронный луч вверх или вниз в зависимости от направления намагничивания. При этом электронный луч вычертит на экране трубки замкнутую кривую, представляющую собой график намагничивания нашего бруска, в котором величина горизонтального отклонения отвечает напряженности магнитного поля, а вертикальное отклонение соответствует намагниченности.
Читать дальше