Фактически этот процесс дает хороший способ измерения массы нейтрона. Нужно только найти минимальную энергию, которую должны иметь γ -кванты в этом процессе, и скомбинировать ее с массами водорода и дейтерия, измеренными с помощью масс-спектрографов. Соотношение Эйнштейна применимо также к обратному процессу: быстро движущиеся электроны могут, останавливаясь в мишени, создавать рентгеновские лучи. Чем выше напряжение на пушке, тем больше кинетическая энергия электронов и тем выше максимальная частота образующихся рентгеновских лучей. (Это дает полезное правило, поскольку частота определяет проникающую способность рентгеновского излучения.) Гораздо более медленные электроны могут иногда создавать кванты видимого света, замедляясь при столкновениях.
Фиг. 185. Фоторасщепление дейтрона.
Фотон γ -лучей с энергией 2,2 Мэв или больше может разорвать ядро тяжелого водорода на протон и нейтрон.
Фотоны
Таким образом, в начале этого века была принята квантовая теория с ее единственным правилом: ЭНЕРГИЯ КВАНТА = h∙ЧАСТОТА. Она успешно объяснила спектр излучения, удельную теплоемкость, фотоэлектрический эффект, образование рентгеновских лучей. Планк показал, что при излучении атомов энергия упакована в кванты. Затем Эйнштейн продвинулся еще дальше, показав, что излучение само по себе должно быть упаковано в кванты.
Фиг. 186. Природа света.
Это было в 1905 г. — в том самом году, когда он опубликовал также свою теорию броуновского движения и выдвинул специальную теорию относительности! Таким образом, квантовая теория с помощью Эйнштейна превратилась из правила упаковки в стройное рассмотрение излучения как малых частиц. Чтобы подчеркнуть представление о частицах, всякий раз, когда имеют в виду корпускулярный аспект в поведении излучения, говорят о фотонах (по аналогии с электронами, нуклонами и т. п.). Все фотоны перемещаются (в вакууме или воздухе) со скоростью света с . Тогда, как следует из релятивистской формулы для массы, они должны иметь нулевую массу покоя. Это не вещество, поскольку их никогда нельзя найти покоящимися. При движении они имеют массу m , такую,
что
ЭНЕРГИЯ, m∙ с 2= ЭНЕРГИЯ, h∙ v
и
ИМПУЛЬС = m∙ с= ЭНЕРГИЯ/ с= h∙ v/ с
Таким образом, мы представляем излучение как ведомый волнами, перемещающимися со скоростью света с , поток фотонов, каждый из которых переносит массу, импульс, энергию h ∙ v .
Фиг. 187. Природа света.
В экспериментах проявляются две свойственные свету формы поведения, которые кажутся противоречивыми, но которые можно согласовать следующим путем. Пропускаем свет через «прерыватель» (отбирающий короткие сигналы света) и направляем его на поверхность металла, из которой свет может выбивать электроны. При этом используется настолько слабый пучок света, что если свет представляет собой непрерывный поток волн , то нам всегда придется ждать почти до конца такого сигнала, прежде чем наберется энергия волны, достаточная для вырывания одного электрона. Однако, если свет представляет собой поток частиц , мы ожидаем, что электроны будут испускаться на произвольных стадиях; иногда в конце сигнала, иногда в середине, а иногда при поступлении самого начала сигнала. Такой эксперимент был проделан. Каждый выбитый электрон ускорялся к мишени, где он выбивал большое число электронов в «фотоэлектронном умножителе», который действует как усилитель для одного выбитого электрона. Импульс заряда от этого усилителя наблюдался на осциллографе, развертка которого синхронизирована с прерывателем. Оказывается, импульсы поступают произвольно во все моменты светового сигнала. Посмотрите об этой демонстрации замечательный кинофильм Джона Кинга «Фотоны», сделанный P.S. S. С. (В фильме, который вы увидите, этот вопрос иллюстрирован такой задачей: человек хочет получить литр молока из снабжающего его потока, который поступает через прерыватель. Имеются две формы снабжения; 1) сплошной поток по желобу, при котором человеку приходится ждать определенное время, пока наполнится его литровая бутыль; 2) конвейер, доставляющий ему литровые бутылки, наполненные молоком, — причем они беспорядочно расставлены вдоль конвейера.)
Читать дальше