0,002/2,130 = 0,0939 %, 0,002/2,132 = 0,0938 %, 0,002/2 = 0,1000 %.
Все три результата дают при округлении одно и то же значение 0,1 %. Именно этим значением, легко вычисляемым в уме, и стал бы пользоваться любой физик.
Вычисления с ошибками
Предположим, что для вычисления какой-то величины требуется перемножить несколько результатов измерений. Для нахождения ошибки произведения нужно сложить все ошибки (или неопределенности) сомножителей. При этом ошибку произведения, как и ошибки сомножителей, выражают в процентах. Например, допустим, что при измерении площади прямоугольного участка землемер по небрежности находит завышенные значения длины и ширины. Предположим, что измеренная им длина завышена на 2 %, а ширина — на 3 %. Результат вычисления площади участка будет завышен на 2 + 3 %, т. е. на 5 %, а не на 2 x 3 %, что составляет 0,06 %. Предлагаем вам разобрать следующие задачи.
Задача 1. Ошибки в сомножителях
а) ( Арифметическая задача .) Длина прямоугольного участка 400 м, а ширина 300 м. Измерения выполнены неточно, они дали значения 408 м на 309 м.
Вычислите истинную площадь поля.
Вычислите площадь поля по результатам измерений.
Выразите ошибку, допущенную при измерении длины участка, в процентах от длины. Найдите также ошибку в процентах, допущенную при измерении ширины.
Выразите ошибку в определении площади участка в процентах от площади.
Чтобы найти площадь участка, мы умножаем его длину на ширину. Какое правило нужно применить для определения ошибки, допущенной при вычислении площади в приведенном примере? Как мы должны поступить: перемножить ошибки, допущенные при измерении длины и ширины участка, или сложить эти ошибки?
б) ( Более формальный подход .) Рассмотрите задачу следующим образом:
Результат определения длины
408 м или (400) + (2 % от 400).
Мы можем записать это в виде
400 + ( 2/ 100)∙400
и представить произведением 400∙(1 + 2/ 100)
Точно так же запишите ширину участка. Вычислите площадь участка по полученным результатам измерений, перемножив длину и ширину, записанное в виде произведений:
(400∙(1 + 2/ 100))∙(300 + ())
Это дает
400∙300∙()()
или
120 000∙()()
Величина 120 000 кв. м характеризует истинную площадь. Поэтому произведение ()(), будучи представлено суммой (1 + некоторое число), прямо дает ошибку в процентах при определении площади. Преобразуйте произведение ()() к сумме вида (1 + некоторое число), как это делается в алгебре. Точно так же, как запись 400∙(1 + 2/ 100) указывает ошибку 2 % в измерении длины, 400 м, результат такого преобразования покажет, что ошибка в определении площади равна…%.
в) ( Алгебраический вариант .) Размеры прямоугольного земельного участка X м на Y м. Длина участка завышена при измерении на x % и равна по данным измерений Х + ( x /100)∙ Х м; ширина завышена на у %.
Разложите длину и ширину, найденные при измерениях, на множители, как в задаче ( б ). Перемножьте обе величины, чтобы найти площадь. В полученном результате нужно выделить ту часть, которую можно истолковать как ошибку в процентах, допускаемую при определении площади. [Обратите внимание на то, что ошибка не равна в точности величине, вычисляемой по приведенному выше простому правилу. Произведение ()(), приведенное к сумме (1 + некоторое число), содержит еще одну очень малую дробь со знаменателем 10 000. Эта дробь представляет собой чрезвычайно малую добавку к ошибке, и ею можно пренебречь. Убедитесь в этом сами, подставив конкретные числа; например, возьмите 2 вместо х и 3 вместо у .]
г) ( Геометрический вариант .) Нарисуйте прямоугольный участок поля. Удлините стороны прямоугольника так, чтобы длина увеличилась на х %, а ширина — на у %, и очертите новые границы участка. Какую долю первоначальной площади составляют добавочные полоски?
Задача 2. Ошибки в сомножителях со знаками плюс и минус
Предположим, что в задаче 1 при обмере участка длина оказалась завышенной, а ширина заниженной. Покажите в общем виде с помощью алгебраических преобразований или на примере с конкретными числами, что ошибка в процентах при вычислении площади равна разности ошибок в определении длины и ширины или алгебраической сумме этих ошибок, если ошибку заниженного результата измерений считать отрицательной.
Задача 3. Ошибки в двух и более одинаковых сомножителях
Предположим, что прямоугольный участок в приведенных выше задачах представляет собой квадрат. Если землемер это знает, он измеряет лишь одну сторону квадрата X (с ошибкой х %) и для определения площади возводит результат измерения в квадрат.
Читать дальше