Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поэтому запятую следует поставить так: 161,8.

Стандартная запись дает

Следовательно, ответ 161,8.

Проценты

Знак % означает просто 1/ 100, так что 2 % означает 2/ 100; 6,21 % означает 6,21/ 100, a 0,03 % означает 0,03/ 100. Если вы хотите, например, выразить 3/ 20с помощью знака %, то нужно превратить 3/ 20 в равновеликую дробь со знаменателем 100. В данном случае это просто: 3/ 20 — это то же самое, что 15/ 100. Значит, 3/ 20 равно 15 %, т. е. 15 % — это просто иной способ записи дроби 3/ 20 !

Чтобы перевести в % число 3,2/ 23, мы должны перевести его в равновеликую дробь со знаменателем 100. Для этого запишем 3,2/ 23 в виде дроби со знаменателем 1, после чего умножим числитель и знаменатель на 100. Производя затем деление в числителе, получаем

Значит 32 23 это то же самое что дробь 14 100 которую мы записываем в - фото 274

Значит, 3,2/ 23— это то же самое, что дробь 14/ 100, которую мы записываем в виде 14 %. Выразить 3 в процентах от 20 означает просто записать дробь 3/ 20и превратить ее в равновеликую дробь со знаменателем 100, а затем записать новую дробь с помощью знака %. Мы записываем 3/ 20в виде 15/ 100, следовательно, ответ 15 %.

Чтобы выразить 0,032 в процентах от 7,91, мы записываем дробь 0,032/ 7,91и преобразуем ее так, чтобы числитель и знаменатель были целыми числами: 32/ 7910. Затем превращаем эту дробь в дробь со знаменателем 100 и получаем

Запись ошибок экспериментальных данных в процентах Если результаты двух - фото 275

Запись ошибок экспериментальных данных в процентах

Если результаты двух измерений какой-нибудь величины несколько отличаются друг от друга, то их расхождение выражают в процентах от всего результата измерений. Так сделано в приводимых ниже примерах:

1) Экспериментаторы А и В фиксируют время на соревнованиях, они получили соответственно 506 и 504 сек. Разница в замерах 2 сек, ее нужно отнести к результату самих замеров, который немногим превышает 500 сек. Чтобы указать, насколько близко оба результата совпадают, мы выражаем их разность в виде доли всего времени: 2 сек/500 сек. Разность 2 сек составляет 2/ 500замеренного времени. Превращая эту дробь в дробь со знаменателем 100, получаем 2/ 500= 0,4/ 100= 0,4 %. Мы говорим, что результаты измерений различаются на 0,4 %.

2) Два взвешивания одного и того же предмета дают 2,130 и 2,132 кг. Оба взвешивания различаются на 0,002 кг, эту разницу нужно отнести к результату взвешивания, равному 2 кг. Таким образом, интересующая нас дробь равна 0,002/ 2, или 0,001, т. е. 0,1 %. Мы говорим, что расхождение результатов взвешивания составляет 0,1 %.

Считая оба измерения одинаково надежными, (допустим, что они произведены двумя хорошо успевающими учащимися), мы можем выразить в процентах их расхождение , но это нельзя называть ошибкой в процентах. Если же экспериментатор проверяет новый прибор, измеряя с его помощью какую-либо известную величину, то расхождение между полученным результатом и стандартным значением можно выразить в процентах. Полученную таким образом величину можно назвать ошибкой (в процентах) и приписать ее прибору. Иногда проделывают много измерений той или иной величины и берут среднее из полученных результатов, рассчитывая таким путем исключить случайные ошибки. При этом можно выразить в процентах разности между отдельными результатами и средним значением и назвать их ошибками отдельных измерений, выраженными в процентах.

«Ошибка» (в процентах) характеризует небрежность при выполнении эксперимента или недостатки приборов, она свидетельствует о неопределенности в аппаратуре или в наших рассуждениях. Стремиться к чрезмерной точности при указании ошибок нет смысла. Это нелогично. Например, если разрубить обеденный стол на дрова, то вряд ли стоит потом зачищать куски дерева наждачной бумагой! Допустим, что, вычисляя ошибки, мы получили величину 0,4219365 %. Представлять ошибку таким числом — совершенно неразумно; так никогда не поступают. Если же указать, что ошибка равна 0,4 %, то это вполне имеет смысл, таким числом можно пользоваться.

Поэтому безразлично, на какое число мы будем делить при подсчете процентной ошибки: на один из результатов измерений, на их среднее или на какое-то близкое к ним округленное число . Выражая в процентах ошибку, т. е. недостаток точности, стараться вычислить ее как можно точнее — это просто тратить впустую время. В приведенном выше втором примере можно делить 0,002 на 2,130, или 2,132, или просто на 2. Ответы будут такие:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x