Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Массивное колесо (уравновешенное на подшипниках) с очень малым трением не вращается под действием своего веса, однако если мы возьмемся за обод и заставим колесо вращаться, то сразу убедимся, что оно обладает массой; по-видимому, его точно так же трудно привести во вращение на Луне или в любом другом месте. Полкилограмма шоколада, если его съесть сразу, дает не только чувство тяжести, обусловленное притяжением этого шоколада Землей, но обеспечивает, так сказать, объем и питание, и при условии такого же состояния нашего здоровья на Луне следует ожидать таких же результатов от этого же количества съеденного шоколада. Даже если бы устроили лабораторию в свободно падающем ящике, то пришли бы к выводу о неизменности масс и не заметили бы, что предметы притягиваются Землей, как обычно.

Формулируя представление о массе при помощи таких туманных описаний, как количество материи, мера трудности ускорения движения, «инертность вещества» и т. д., или при помощи определения

МАССА = СИЛА / УСКОРЕНИЕ,

которое кажется ясным и недвусмысленным, мы считаем, что определяем некое универсальное неизменное свойство всех видов вещества, нечто существующее столь же вечно, как и сама материя.

Масса и вес

Как велико земное притяжение, действующее на разные массы? Как сравнивать веса двух предметов? Возьмем два одинаковых куска свинца, скажем по 1 кг каждый. Земля притягивает каждый из них с одинаковой силой, равной весу 1 кг. Если мы соединим оба куска в 2 кг, то вертикальные силы просто складываются: Земля притягивает 2 кг вдвое сильнее, чем 1 кг. Мы получим точно такое же удвоенное притяжение, если сплавим оба куска в один или поместим их один на другой. Гравитационные притяжения любого однородного материала просто складываются, и нет ни поглощения, ни экранирования одного куска вещества другим [102].

Для любого однородного материала ( вес ) ~ ( масса ). Поэтому мы считаем, что Земля является источником «поля силы тяжести», исходящего из ее центра по вертикали и способного притягивать любой кусок вещества. Поле силы тяжести воздействует одинаково, скажем, на каждый килограмм свинца. А как обстоит дело с силами притяжения, действующими на одинаковые массы разных материалов , например 1 кг свинца и 1 кг алюминия? Ответ, точнее, смысл вопроса, зависит от того, что мы понимаем под одинаковыми массами.

Сравнение масс двух предметов путем измерения ускорения (например, вагончика на рельсовом пути) представляет собой сложное и утомительное занятие, но его можно осуществить, после чего можно сравнить веса этих масс на пружинных весах. Однако вы хорошо знаете, что наиболее простой способ сравнения масс, которым пользуются в научных исследованиях и в торговой практике, — это применение рычажных весов. В них сравниваются силы , которые тянут оба груза, и метод совершенно правильно называют «взвешиванием». Но, получив путем взвешивания одинаковые массы, скажем свинца и алюминия, мы предполагаем , что равные веса имеют равные массы. Никакой дальнейший эксперимент по измерению сил не может дать ответа на наш вопрос относительно массы и веса; по-видимому, здесь мы рискуем оказаться в замкнутом кругу. Фактически мы говорим о двух совершенно разных видах массы — об инертной и о гравитационной массе. Их различие содержит важнейший момент общей теории относительности. Однако в период от Ньютона до Эйнштейна это различие казалось несущественным, о нем не имели представления; поэтому изучение массы, движения, силы, веса и тяготения стало более трудным и запутанным даже в рамках элементарного курса физики. Мы рассмотрим оба вида массы, присвоив им символы М ° и М +.

Два вида массы

Фиг 157 Два вида массы а инертные б гравитационные Инертная масса - фото 154

Фиг. 157. Два вида массы,

а— инертные; б— гравитационные.

Инертная масса . Величина М в формуле F= K∙ Mапредставляет собой инертную массу . В опытах с тележками, которым придают ускорение пружины, величина М выступает как характеристика «тяжеловесности вещества», показывающая, насколько трудно сообщить ускорение рассматриваемому телу. Количественной характеристикой служит отношение F / a . Эта масса представляет собой меру инертности, тенденции механических систем сопротивляться изменению состояния. Мы называем ее «инертной массой» и обозначаем символом М °. Если ограничиться од ним химическим элементом, то одну массу М ° можно сравнивать с другой или с эталоном в 1 кг° путем подсчета атомов. (Сегодня мы умеем считать атомы, но даже самому быстродействующему счетчику Гейгера, если бы он работал днем и ночью, потребовались бы миллиарды лет, чтобы непосредственно пересчитать атомы в одном килограмме вещества.) Если подходить с более реальных позиций, то мы можем сравнивать массы° по аналогии с определением величины М °, т. е. посредством измерения ускорения и силы. Например, мы прикладываем некоторую стандартную силу, скажем пружины, к тележке, находящейся на горизонтальном рельсовом пути без трения, как показано на фиг. 160 (стр. 267):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x