Опыт 2(б). Сила и ускорение.
Если мы убеждены, что ускорение постоянно, т. е. если величины 2 s / t 2совпадают в пределах ошибок измерений (включая ошибки наблюдателя), то можно провести опыт о одним расстоянием, скажем 2 м.
Следует прикладывать поочередно разные по величине силы, измеряемые при помощи силомера, и измерять ускорение, отмечая, как и прежде, промежутка времени. Мы хотим выяснить, действительно ли ускорения пропорциональны силам (см. таблицу Б).
Опыт 2(в). Масса. До сих пор принималось, что общее количество движущегося вещества, т. е. масса тележки, остается неизменным. В соответствии с обычной практикой мы сохраняем неизменными все переменные, кроме двух — силы, и ускорения, связь между которыми и исследуем. Перейдем теперь к другим количествам вещества, к удвоенной и утроенной «массе». Если мы хотим отождествить массу с количеством вещества, которому надо сообщить движение , то следует иметь возможность удвоить массу, скажем, соединив вместе две одинаковые тележки и сообщая ускорение им обеим.
Фиг. 148. Опыт 2(б).
Как можно убедиться в том, что все исследуемые тела одинаковы по массе? Можно просто сделать их все одинаковыми, из одних и тех же материалов. Можно представить, что нам ассистирует некий демон, который проверяет исследуемые тела, подсчитывая число атомов. (Фактически экспериментатор в состоянии сейчас это проделать с помощью радиоактивных индикаторов и счетчика Гейгера.) Но нам нужны одинаковые тела для опытов по изучению зависимости между силой и ускорением. Поэтому, изготовив несколько тел, которые мы считаем одинаковыми, мы должны проверить их тождество, прикладывая поочередно к каждому из них одну и ту же силу. Если они движутся с одинаковыми ускорениями, мы считаем их одинаковыми, т. е. имеющими одинаковые «массы». Кроме того, мы допускаем , что удвоенную массу, утроенную массу и т. д. можно получить, положив одно тело на другое или скрепив их одно с другим [93].
Фиг. 149. Опыт 2(в).
Прикладывая одну и ту же силу к массам М ; 2 М и 3 М , мы должны предполагать, что ускорения будут все меньше и меньше. Можно было бы проверить, не находятся ли ускорения, сообщаемые одинаковой силой, в пропорции 1: 1/ 2: 1/ 3. Однако можно избавиться от лишних затруднений, предположив, что результат должен быть именно таким, и придумать более простой способ проверки. Проделывая опыты с разными массами, мы стараемся подобрать силу так, чтобы сообщать каждой массе одно и то же ускорение , т. е. полагаем, что к удвоенной и утроенной массе потребуется приложить соответственно вдвое и втрое большую силу. (Об этом говорит символический эксперимент, фиг. 150.)
Фиг. 150.
Тогда мы можем поставить решающий вопрос: если изменить массу движущегося тела и вместо М взять 2 М и 3 М и изменить в такой же точно пропорции силу F :2 F :3 F, останется ли ускорение неизменным ?
Но если ускорение остается тем же, то и промежутки времени, за которые тело проходит выбранное расстояние, тоже не изменятся, поэтому наша проверка оказывается еще более простой — исследовать промежутки времени, за которые тело проходит выбранное расстояние (см. таблицу В).
Таблица В
Пример записи результатов опыта для проверки соотношения между движущейся массой и силой при постоянном ускорении
Условия опыта: рельсовая колея наклонена для компенсации трения; фотоэлемент установлен так, чтобы отмечать время прохождения расстояния 2,00 м (движение происходит из состояния покоя). Массы выбраны в пропорции 1:2:3; грузы подобраны так, чтобы значения силы также находились в пропорции 1:2:3.
На подступах ко второму закону Ньютона
Движение тела по наклонной плоскости . Если вы исследовали в лаборатории движение колеса по наклонным направляющим, то видели, что уменьшенная сила земного притяжения создает постоянное ускорение. Галилей широко пользовался наклонной плоскостью, чтобы регулировать силу тяжести. Если вас интересуют первые шаги на пути к современной механике, прочтите этот раздел или обратитесь к книге Галилея «О двух новых науках».
Читать дальше