Движущиеся с большими скоростями тела в такой лаборатории кажутся более массивными и т. п., в точности как это предсказывает специальная теория относительности.
Пример Б
В лифте, падающем с ускорением а , экспериментатор, измеряя вес на пружинных весах, получит значение, соответствующее полю силы тяжести напряженностью ( g — a ) (см. задачу 10 в гл. 7 , т. 1, стр 285).
Пример В
В свободно падающем ящике сила, действующая со стороны эквивалентного поля на массу m , будет направлена вверх. Так как она полностью компенсирует вес тела mg , направленный вниз, нам кажется, что наступила невесомость. То же самое происходит и в опытах внутри ракеты, когда ее двигатели выключаются, и в опытах на спутнике, движущемся по орбите вокруг Земли: притяжение Земли здесь не чувствуется, ибо вся лаборатория ускоряется как целое.
Пример Г
Во вращающейся лаборатории введение направленного наружу силового поля напряженностью v 2/ R сводит локальные особенности механики к случаю стационарной лаборатории.
2. Интерпретация силы тяжести. Любое реальное поле силы тяжести можно интерпретировать как локальную модификацию пространства-времени переходом в такую ускоренную систему, где поле исчезнет. Этот переход не помогает вычислениям, но указывает на новый смысл гравитации, который будет обсуждаться в следующем разделе.
3. Невесомость. Если поле силы тяжести действительно эквивалентно ускорению системы, то мы можем ликвидировать его, придавая нашей лаборатории подходящее ускорение. Обычная сила тяжести — притяжение Земли — действует вертикально вниз. Она эквивалентна направленному вверх ускорению g нашей системы. Если же мы позволим нашей лаборатории падать вертикально вниз, то не обнаружим в ней действия силы тяжести. В нашей лаборатории имеются два ускорения — «реальное» ускорение падающего тела и противоположное ему ускорение, заменяющее поле силы тяжести. Они в точности компенсируют друг друга и получается эквивалент стационарной лаборатории в отсутствие гравитации . Это попросту означает, что если лаборатория свободно падает, то в ней не чувствуется земного притяжения . Практически это осуществимо при космических полетах или спуске в свободно падающем лифте. В подобной ускоряющейся системе отсчета локально устранены все следы поля силы тяжести Земли или Солнца [267]. Теперь можно предоставить тело самому себе и понаблюдать за его поведением. Его путь в пространстве-времени оказывается прямой линией, и мы ожидаем, что тело будет подчиняться простым механическим законам. У нас получилась локальная инерциальная система отсчета.
4. Искусственная сила тяжести. Напротив, создавая большие реальные ускорения, можно получить мощное силовое поле. Если верить принципу эквивалентности, то можно ожидать, что это силовое поле будет действовать на вещество подобно очень сильному гравитационному полю. С этой точки зрения центрифуга тысячекратно увеличивает значение g .
5. Символические эксперимента. Для наблюдателя, движущегося с ускорением a , каждая масса m °, помимо других сил, действующих на нее со стороны известных тел m °∙ а , кажется подверженной действию силы, противоположной ускорению. В поле силы тяжести напряженностью g масса притягивается с силой ∙ g. Здесь m ° обозначает инертную массу, которая входит в формулу F= ma, а обозначает гравитационную массу в законе всемирного тяготения F= G∙ M∙ m/ d 2. Принцип эквивалентности гласит, что поле силы тяжести напряженностью g можно заменить противоположно направленным ускорением наблюдателя g :
∙ g должно быть равно m° g, т. е.
Принцип эквивалентности требует, чтобы гравитационная масса была равна инертной, и символический эксперимент давно доказал, что так оно и есть. Как вы увидите из последующего, Эйнштейн в своей общей теории относительности придал этому равенству двух сортов масс более глубокий смысл.
Общая теория относительности и геометрия
В малой области пространства-времени поле силы тяжести Земля, как и любые другие гравитационные поля, практически однородно. Поэтому в локальном опыте мы можем «убрать» притяжение, дав нашей лаборатории возможность свободно падать. При этом она будет подобна инерциальной системе в отсутствие гравитационных полей, т. е. предоставленные самим себе тела будут оставаться в ней в покое иди двигаться по прямой, а приложив к ним силу, мы обнаружим, что F= ma. Однако в большем масштабе, скажем в пространстве около Земли или около Солнца, мы должны использовать множество различных ускорений, чтобы устранить силу тяжести в каждой из локальных лабораторий. Чтобы согласовать прямолинейное движение в соответствии с первым законом Ньютона с его продолжением в соседней лаборатории, которая также свободно ускоряется, мы должны будем «искривить» траекторию. При переходе из лаборатории в лабораторию около тяготеющей массы придется изгибать ее еще больше. Как это объяснить? Вместо того чтобы говорить «мы обнаружим здесь, помимо всего, сипу тяжести», мы могли бы сказать. «Евклидова геометрия не соответствует реальному миру вблизи массивной Земли и Солнца». Общая теория относительности выбирает второе. Как и при создании специальной теории относительности, Эйнштейн искал простейшую геометрию, которая удовлетворяла бы новому предположению о том, что запись законов физики всегда должна быть одинаковой. Он пришел к геометрии общей теории относительности, в которой сила тяжести как некая странная сила, порождаемая массой, исчезла, уступив место возмущению пространства-времени в окрестности масс.
Читать дальше