Аналогичное рассмотрение можно применить и к колебаниям атомов в твердом кристалле (фиг. 96).
Фиг. 96. Удельная теплоемкость твердого тела.
Вce атомы кристаллической решетки твердого тела похожи друг на друга и каждый из них может колебаться. Равномерное распределение предполагает равную долю кинетической и потенциальной энергий на каждое из направлений колебаний атома в трехмерном пространстве. Отсюда мы получаем, что произведение удельной теплоемкости на атомный вес должно быть постоянной величиной, приблизительно равной 6. Однако экспериментальные измерения, как видно из точек на фиг. 97, при низких температурах дают гораздо меньшую величину.
Допустим, что атомы гелия сконденсировались в твердое тело. Каждый атом теперь привязан упругими силами к своему месту в кристаллической решетке. У него нет ни поступательного, ни вращательного движения, но он может колебаться в трех независимых направлениях, так что должен обладать шестью долями колебательной энергии вместо трех долей поступательного движения. Поэтому удельная теплоемкость твердого гелия должна быть вдвое больше чем 0,75, т. е. 1,5. Однако замороженный гелий ведет себя не так просто; снова возникают квантовые неприятности. Но поведение других твердых тел при более высоких температурах хорошо согласуется с этим предсказанием. Умножая предсказанное для гелия число 1,5 на его атомный вес 4, мы получаем 6,0. Если вы проследите за рассуждениями в задаче 8 , то увидите, что переход к другому элементу дает ту же самую величину произведения удельной теплоемкости на атомный вес . В этом заключается правило Дюлонга и Пти, открытое около века назад в решившее споры о химических атомных весах. Оно удивительно хорошо подходит повсюду, за исключением низких температур, где дают себя знать квантовые эффекты.
При достаточно низких температурах квантовые ограничения сводят удельную теплоемкость к нулю. Кривую изменений теплоемкости можно получить комбинацией квантовых правил с кинетической теорией. «Достаточно низкие температуры» изменяются при переходе от одного твердого тела к другому и зависят от естественных частот колебаний атомов в кристалле. Поэтому, чтобы сравнить экспериментальные данные с теорией, мы для каждого твердого тела откладываем на графике свою шкалу температур. После этого все измерения ложатся на одну теоретическую кривую (фиг. 97).
Таковы замечательные результаты изучения удельной теплоемкости столь скучного на первый взгляд предмета. Уже первые предсказания кинетической теории согласовывались с фактами, убеждая тем самым в правильности теории. Затем появились исключения и потребовали новой, квантовой теории, которая в свою очередь очень хорошо согласовывалась с экспериментом и объяснила целый ряд кажущихся противоречий.
Фиг. 97. Квантовая теория удельной теплоемкости.
Наложение квантовых ограничений на равномерное распределение энергии в случае колебаний атомов приводит к теоретическому предсказанию, изображенному сплошной линией.
Каков диаметр молекулы?
Сколь велики молекулы воздуха? Это бессмысленный вопрос, если мы не скажем, сколь сильно мы предполагаем давить на молекулу, измеряя ее. Портной может уменьшить размер талии человека почти до нуля, перерезав ее при снятии мерки жесткой стальной проволокой. Мы можем уменьшить «диаметр» молекулы до нуля, измеряя его с помощью электронов, ускоренных миллиардами вольт. Здесь мы имеем в виду диаметр при «обычных соударениях», т. е. расстояние между центрами сталкивающихся молекул при наибольшем сближении или при плотной упаковке в жидкости или твердом теле. В наглядной модели атомной структуры — это размер внешнего электронного облака атомов в молекуле.
Грубую оценку размера молекул можно получить из измерения толщины масляных пленок (см. задачи 5, 6, 7 в гл. 6 [218]). Это дает для молекулярной цепи из 19 атомов углерода длину 24∙10 -10м или 24 А° (ангстрема). Тогда получаем, что «диаметр» каждого атома углерода в тесной цепочке равен 1–2 А°. Молекулы кислорода и азота содержат по два атома (по-видимому, больших по размерам, чем атом углерода), так что мы можем поместить эту гантель в «шарик» диаметром 3–4 А° [219]. Тогда их «поперечное сечение» относительно рассеяния будет около π (3,5∙10 -10/2) 2м 2.
Для получения более надежных оценок мы не будем пользоваться результатами измерения пленок или броуновского движения. Мы подойдем по-иному: рассмотрим измерения с жидким и обычным воздухом и бурыми парами брома.
Читать дальше