Общее рассмотрение тепловых машин приводит ко второму началу термодинамики:
Теплота сама по себе не может переходить от холодного тела к теплому.
Это простое, почти тривиальное утверждение вместе с первым началом превращается в мощную теорию. Термодинамика приводит к кельвиновской шкале температур, является основой всех тепловых машин от паровоза до двигателя современной ракеты, основой теории холодильников и «перекачивания» тепла, дает возможность делать разнообразные полезные предсказания, например устанавливать связь между напряжением батареи и химическими реакциями в ней, или утверждать, что
ПОТОК ИЗЛУЧЕНИЯ ~ Т 4.
Общность подхода, лежащего в ее основе, придает ей еще большую силу, ибо изменения деталей внутреннего механизма процессов в системе не могут повлиять на ее заключения.
Когда к термодинамике добавляют молекулярную картину строения вещества, она превращается в «статистическую механику», которая исследует законы хаотического движения. Благодаря этому термодинамика связывается с атомной физикой. А в последнее время примененная вместо молекул к «битам информации», она перевернула теорию и практику связи.
Физика XIX века
В начале прошлого века энергия была идеей, не имевшей прочной репутации. Но благодаря Джоулю и многим другим возникло представление о сохранении энергии: механическая переходит в тепловую, тепловая в механическую — баланс всюду сходился; химическая энергия превращалась в тепловую или сначала в электрическую, а затем в тепловую, электрическая энергия в химическую, а затем в тепловую — все это было обнаружено в массе опытов, которые проверялись и перепроверялись. Баланс все равно сходился.
Это был век торжества науки. В начале века утвердилась химия, и незадолго до этого был открыт электрический ток; в середине столетия наука об электричестве и электротехника стали развиваться гигантскими шагами, а в конце зародилась атомная физика. Но величайшим достижением, по-видимому, явилось установление закона сохранения энергии, причем энергия стала фундаментальным понятием, связавшим все воедино.
«Опыты Джоуля» в лаборатории
Работы Джоуля и его установки были чудом экспериментальной точности. Обычно результаты опытов искажаются потерями тепла. Чтобы оценить работу Джоуля, вам предстоит исследовать в лаборатории сохранение энергии. Но при этом вряд ли удастся добавить что-либо к полученным Джоулем экспериментальным доказательствам. Ваша работа скорее направлена на то, чтобы вызвать чувство уважения к Джоулю в его борьбе с трудностями и восхищение его искусством.
Опыт. Измерение перехода потенциальной энергии силы тяжести в теплоту при падении свинцовой дроби (грубый эксперимент). Положите горсть свинцовой дроби в закрытую картонную трубку и быстро переверните ее так, чтобы дробь пролетела всю высоту трубки. Резко переверните трубку еще и еще раз, подряд раз 50. С помощью ртутного термометра измерьте температуру дроби, высыпав ее в бумажный стаканчик, до и после серии переворачиваний. При каждом переворачивании трубки свинец приобретает гравитационную потенциальную энергию за счет энергии переворачивания трубки. При падении дроби ее потенциальная энергия превращается в кинетическую, которая затем при неупругом ударе дроби о дно переходит в теплоту.
Вычислите полную потенциальную энергию, потерянную дробью, и приращение количества тепла. Допустив, что весь запас потенциальной энергии переходит в теплоту и что теплота не теряется, вычислите механический эквивалент J , т. е. количество потенциальной энергии в джоулях, превратившейся в 1 Кал тепла.
1) Если хотите, взвесьте дробь или объясните, почему это не обязательно.
2) Удельную теплоемкость свинца примите равной 0,035 или посмотрите ее в таблицах.
3) Нарисуйте трубку и укажите, где находится дробь: а) в верхнем положении, б) в нижнем.
С помощью этого рисунка определите, какую нужно брать высоту падения.
4) Когда дробь заканчивает свое падение, дно трубки должно находиться на твердом столе. Если вы держите трубку в руке, то удар «смягчается», так как ваша рука пружинит, и значительная часть кинетической энергии дроби отдается руке. С другой стороны, если при переворачивании вы сдвинете трубку вверх, а затем стукнете ею по столу, дробь будет падать с большей кинетической энергией, нежели дает расчет.
5) Почему мы советуем сделать 50 переворотов? После 5 переворотов температура возрастает слишком мало, а после 5000 установится постоянная температура. Почему? Что лучше: 10, 20, 50 или 100 переворотов?
Читать дальше