Он тщательно измерял охлаждение сосуда, так что мог учесть утечку тепла и во время перемешивания воды. Затем брал полную потерю потенциальной энергии и полное тепловыделение и получал коэффициент перехода 780:1 в своих единицах. Такое отношение характерно не только для воды. Чтобы доказать это, Джоуль помещал в сосуд и ртуть, и китовый жир и даже определял выделение тепла при трении железных плиток [208].
Фиг. 84. Опыты Румфорда, Дэвии Джоуляс превращением энергии.
Позднее Джоуль вернулся к еще более точному измерению перемешивания воды. Его последний опыт с перемешиванием, сделанный через 40 лет после первого, был повторен Роуландом в университете Джона Гопкинса, однако крыльчатое колесо приводилось в движение паровой машиной.
В первых экспериментах Джоуль сделал очень смелый шаг — он пользовался только что открытым электрическим током. Джоуль, а также Генри в Принстоне и другие построили большие электромагниты.
Джоуль создал одну из первых электромагнитных машин, которую можно было использовать и как электромотор, и как генератор. Он брал катушку из медного провода, которая вращалась в поле между полюсами «электромагнита». Генератор приводился в движение падающими грузами. В отсутствие тока катушка вращалась легко, и для преодоления трения нужны были лишь небольшие грузики. Когда же катушка вырабатывала ток, приводить ее в движение становилось гораздо труднее — требовались значительно большие грузы.
Джоуль догадался, что дополнительная потенциальная энергия выделялась током в виде теплоты. Чтобы получить максимальный ток, он соединил концы катушки в короткозамкнутую цепь и, окружив катушку водой, собрал выделяемое тепло.
Вычитая результаты измерений при холостом ходе из результатов рабочих измерений, Джоуль исключал трение, учесть которое по-другому было бы невозможно. Итак, электрическая энергия в качестве промежуточного звена дала практически то же самое отношение, т. е. 780:1.
Затем Джоуль использовал свою машину как электромотор, работающий от батареи. Когда катушка была зажата (в покое), текущий через нее ток нагревал окружающую воду. Когда же катушка освобождалась и, вращаясь, поднимала груз, теплоты выделялось меньше, но груз приобретал потенциальную энергию.
Вычитание двух результатов для одинаковых химических изменений в батарее при переходе потенциальной энергии в теплоту снова дало отношение примерно 800:1. На этот раз общим источником была химическая энергия и Джоуль предположил, что при одном и том же расходе химикалий выделяется одна и та же энергия. (Из других химических опытов он убедился, что химическая, электрическая и тепловая энергии при взаимных переходах правильно «балансируют его счета».)
Фиг. 85. Опыты Джоуля, Роуландаи Хирнас превращением энергии.
Фиг. 86. Опыты Каллендераи Барнеса.
Косвенные методы используют электрические измерения. Амперметр градуируется по силе взаимодействия катушек с током, вольтметр градуируется на примитивном генераторе, дающем э. д с, которую можно вычислить из простой геометрии, измеренного тока и скорости вращения.
* * *
Эксперименты по изучению взаимного превращения механической энергии и теплоты
Краткое описание и результаты некоторых из наиболее известных экспериментов
Год ∙ Экспериментатор ∙ Метод ∙ Результат в единицах Кал на тыс. дж
∙1708 ∙ Румфорд
Сверление пушки тупым сверлом. Лошади, приводившие в движение сверлильный станок, создавали «неограниченное количество» тепла. Сам Румфорд не вычислял механического эквивалента, но вычисления, основанные на его записях работы лошадей и нагревания воды, согласно Джоулю, позднее привели к указанной оценке ∙ 5 или 6
∙1799 ∙ Дэви
Трение двух кусочков льда один о другой, по его мнению, вызывает их таяние. Пользуясь часовой пружиной, он с помощью трения расплавлял в вакууме воск. (Эксперименты слишком грубы, чтобы служить истинной проверкой, но опыты Дэви сильно повлияли на взгляды других ученых.) ∙ 3,5
∙1842 ∙ Майер
Предложил термин «механический эквивалент тепла» и оценил его, исходя из удельной теплоемкости газов, но использовал неточные данные и делал произвольные допущения ∙ 3,5
∙1839–1843 ∙ Джоуль
Экспериментировал с электрическим током; он интерпретировал эффект нагревания и химический эффект на основе растущей веры в нечто, похожее на сохранение энергии, рассматривая теплоту как форму движения ∙ 3,5
Читать дальше