Скорости молекул
Даже в газе, состоящем из одинаковых молекул, разнообразие скоростей огромно. Средняя скорость молекул при данной температуре имеет вполне определенную величину, однако отдельные молекулы при каждом соударении изменяют свою скорость, двигаясь иногда быстрее, а иногда медленнее. Допустим, что мы можем заставить некоего «демона» наблюдать за молекулой и через каждую миллионную долю секунды записывать ее скорость. Тогда полученные им результаты будут выглядеть так, как это представлено на фиг. 87. Они изобразятся колоколообразной кривой, характеризующей хаотическое движение, скорость которого в большинстве случаев близка к среднему значению. Аналогичное распределение скоростей получится и на моментальной фотографии молекул газа. Такой график называется «максвелловским распределением», по имени Джеймса Клерка Максвелла, который первый дал описание движения молекул газа более века назад.
Фиг. 87. График распределения no скоростям ( I).
a— число молекул (гистограмма), изображающее распределение по скоростям в газе. Каждый крестик на графике показывает молекулу, скорость которой лежит в маленькой окрестности скорости v
Примечание. Каждому крестику левой части соответствует медленная молекула, а правой — быстрая (в данный момент). Максимум дает наиболее «популярную» скорость. Средняя скорость расположена недалеко от нее.
б— такая же колоколообразная кривая, показывающая шансы промаха стрелка, когда он целится прямо в «яблочко» мишени. (Один и тот же «закон случая» применим как к случайным вздрагиваниям руки стрелка, так и к молекулярным скоростям при хаотических упругих соударениях в газе). Кривая б нарисована для обычной плоской мишени с кругами равной ширины, кривая а давала бы вероятность попадания в трехмерную мишень со сферическими зонами.
При наличии смеси двух газов приходится следить за двумя сортами молекул, которые при каждом соударении обмениваются импульсами и энергией. Наш «демон», потрудившись изрядно и записав все тщательно, должен был бы дать нам сведения о скорости, импульсе и кинетической энергии каждого сорта молекул. К сожалению, такого «демона» у нас нет, а сами мы рядом с молекулами Слишком неуклюжи и огромны и не способны наблюдать их по отдельности. Однако при некоторых предположениях мы можем проделать эту работу в уме.
Предположим, что:
1) молекулы движутся хаотически , они столь многочисленны и сталкиваются так часто , что оправдано статистическое рассмотрение;
2) при каждом соударении импульс сохраняется , т. е. молекулы подчиняются тем же законам столкновения, что и упругие шары;
3) при каждом соударении кинетическая энергия сохраняется ; происходит упругое соударение [210], в противном случае молекулы через долю секунды падали бы на дно сосуда.
Пометим теперь любые две сближающиеся, сталкивающиеся и разлетающиеся молекулы номерами 1 и 2 и запишем простые алгебраические уравнения:
(Полный импульс до соударения) = (Полный импульс после соударения)
m 1 v 1 + m 2 v 2= m 1 v' 1 + m 2 v' 2
(Полная кинетическая энергия до соударения) = (Полная кинетическая энергия после соударения)
1/ 2 m 1 v 1 2 + 1/ 2 m 2 v 2 2= 1/ 2 m 1 v' 1 2 + 1/ 2 m2 v' 2 2
Одно соударение — лишь небольшой штриха общей картине. Эти уравнения нужно написать для миллиардов соударений и просуммировать по громадному множеству молекул. Результат оказывается простым: при смешении газов Аи Вмолекулы обоих типов будут обладать одной и той же средней кинетической энергией
1/ 2 m A v ¯ A 2 = 1/ 2 m B v ¯ B 2
Чтобы получить этот результат, нам нужна не таинственная физика, а высшая математика для усреднений, и придется еще позвать на помощь статистика. Он занимается той же работой, но в других областях. Например, для страховых компаний он усредняет продолжительность жизни многих людей в разных ситуациях. Продолжительность отдельной жизни может сильно отличаться от средней, но само среднее — удивительно надежная величина. Благодаря ей страховые компании оправдывают свои миллионные вложения. В газе же имеют дело с гораздо большим числом «клиентов» и событий, нежели любая страховая компания.
Читать дальше