где F – равнодействующая силы тяжести и архимедовой силы;
v – скорость падения тела;
k – коэффициент пропорциональности (сопротивления).
Согласно утверждению авторов учебника, в самом начале движения ускорение падения шарика почти равно ускорению свободного падения, а в дальнейшем, когда скорость нарастает, «ускорение тела обращается в нуль и, начиная с этого момента, тело будет двигаться с постоянной установившейся скоростью». Сказанное выделено курсивом в конце раздела, видимо, как очень важное положение, которое следует получше запомнить. Причем приводятся конкретные данные, когда это ускорение обращается в нуль. Для падающей авиабомбы, например, это произойдет через 5–6 км падения.
Проверим, так ли это на самом деле. Воспользуемся формулой (4.14), заимствованной из цитируемого учебника, и, чтобы быть поближе к практике, расшифруем значение коэффициента k для реальных тел, падающих в воздухе:
где Сx – коэффициент обтекаемости, хорошо известный автомобилистам;
? – плотность воздуха;
S – площадь проекции тела на плоскость, перпендикулярную направлению движения.
На падающее тело действуют силы: Р – разность силы тяжести и архимедовой силы, и сопротивление среды R (рис. 20):
Рис. 20. Силы, действующие на тело, падающее в вязкой среде.
В проекции сил на ось падения тела х:
Составляем дифференциальное уравнение движения, используя формальную запись:
Обозначив:
и подставив в (4.18), получим:
или, после разделения переменных:
Интегрируем обе части уравнения:
При х = 0 v = 0, следовательно С1 = 0. Тогда:
Отсюда окончательно находим зависимость скорости v от пути х:
А теперь проверим, при каком значении пути падения х скорость падения достигнет предельного значения, когда ускорение падения равно нулю. С возрастанием х величина:
убывает, стремясь при х ? ? к нулю, а скорость v возрастает, стремясь к некоторой предельной величине с.
Из равенства (4.19) находим:
Однако, как мы видим, скорость эта достигается только при х – со, а стало быть, не достигается никогда. Поэтому все утверждения о моменте, начиная с которого ускорение падения тела становится равным нулю, необоснованны.
Другое дело, что скорость падения может приблизиться к предельной, а ускорение падения может стать очень малым, но равным нулю – никогда. В реальной жизни могут, конечно, встретиться случаи падения, когда тело даже начнет подниматься вверх, например, в восходящих потоках воздуха, чем успешно пользуются птицы и планеристы. Но если считать справедливыми принятые нами условия (4.14), то скорость падения тела в воздухе, как и в любой вязкой сопротивляющейся среде, где сопротивление пропорционально любой (конечной) степени скорости, продолжает расти.
Читать дальше
Конец ознакомительного отрывка
Купить книгу