--\
\ * = \ Ψ| (x) A Ψ (x) dx, (47)
\
\
\-
x — точка в пространстве Минковского. Ясно, что значение величины инвариантно относительно преобразования
i ALPHA PSIG'(x) — > e||||||| Ψ (x). (48)
Инвариантность величины - следствие тождества i ALPHA — i ALPHA e||||||| * e|||||||| = 1 и того, что комплексно-сопряженная.
* * функция Ψ| (x) преобразуется по закону Ψ| (x) — > — i ALPHA * e|||||||| Ψ| (x). Следовательно, состояние системы,
* которое определяется произведениями Ψ| A Ψ, инвариантны относительно преобразований (48), которые характеризуются изменениями фазы ALPHA. Существенно, что в приведенном примере ALPHA = const (x). Поэтому преобразование (48) называется глобальным фазовым (калибровочным) преобразованием.
В известном смысле глобальное фазовое преобразование не согласуется с основным принципом теории относительности конечностью скорости передачи информации. Действительно, в нашем распоряжении нет возможности согласовать этот принцип с синхронизацией какой-либо величины (в том числе и фазы ALPHA) во всем бесконечном пространстве. Здесь не случайно сделана оговорка «в известном смысле», так как на практике обычно рассматриваются конечные области пространства. Однако принципиальный вопрос остается. Поэтому целесообразно обобщить инвариантность (48), требуя, чтобы фаза ALPHA зависела от положения системы ALPHA = ALPHA (x) ≠ const (x), а функция Ψ преобразовывалась по закону
i ALPHA(x) PSIG'(x) — > e|||||||||| Ψ (x). (49)
Инвариантность такого типа называется локальной калибровочной инвариантностью. Оказывается, что требование уравнений динамики относительно локальной калибровочной инвариантности однозначно определяет уравнения поля.
Остановимся сначала на уравнениях электродинамики. Как известно, ее уравнения (уравнения Максвелла или Дирака) определяются значением функций (полей) и их первыми производными. Выше отмечалось, что физические величины не зависят от значения фазы ALPHA. Однако эта независимость сохраняется для производных лишь при условии ALPHA=const(x), т. е. при глобальных преобразованиях. В общем случае (ALPHA=ALPHA(x)) производная
∂ Ψ i ALPHA(x) ∂ Ψ(x) —--- — > e|||||||||| [------ + ∂ x ∂ x
∂ ALPHA (x) + Ψ (x) —------] (50)
∂ x
и, следовательно, неинвариантна относительно локальных калибровочных преобразований.
Однако можно показать, что эта инвариантность восстанавливается, если наряду с преобразованием (48) при ALHPA = ALHPA (x) ввести одновременно калибровочное преобразование потенциалов
A|'(x) — > A|(x) + ∂ ALPHA (x) / ∂ x, (51) ю ю
с которыми мы уже сталкивались (см. (45)). Иначе говоря, уравнения электродинамики (или их квантовый эквивалент уравнения Дирака) инвариантны относительно совокупности обоих калибровочных преобразований (49), (51).
С другой стороны, из этих преобразований однозначно следуют уравнения электродинамики: классические и квантовые.
Калибровочные преобразования (49), (51) — необходимые и достаточные условия уравнений электродинамики.
Сделаем в заключение три важных замечания.
1. Вывод о калибровочной инвариантности (соотношение 46)) базируется на допущении о неизменности фактора e при калибровочных преобразованиях. Ясно из определения этого фактора, что он играет роль электрического заряда. Таким образом, неизменность величины e отражает неизменность электрического заряда, т. е. его сохранение. Закон сохранения заряда никак не связан с видимым 4-мерным пространством. Он определяется калибровочной инвариантностью. Далее, в разд.9 этой главы мы продемонстрируем связь геометрии с калибровочной инвариантностью и, следовательно, законом сохранения заряда. Однако эта геометрия весьма отличается от геометрии Евклида или Минковского.
2. В соотношении (45) вектор A и функция f или ALPHA зависят от четырех координат (t,x,y,z). Этим калибровочное условие (45) или (51) существенно отличается от калибровочного соотношения (41), в котором величина b не зависит от координат.
3. Таким образом, можно установить эквивалентность следующих утверждений:
уравнения движения (поля) — калибровочно инвариантны,
заряд в замкнутой системе сохраняется,
силы в статическом случае дальнодействующие,
масса частицы переносчика взаимодействия m|||||=0.
GAMMA
Последнее свойство является важной особенностью калибровочной инвариантности, а также и всех остальных ее следствий. Дело в том, что частицы с нулевой массой обладают особым свойством: у таких частиц существует всего два направления поляризации в отличие от частиц с массой m ≠ 0, у которых имеются три три направления поляризации. Это особое свойство безмассовых частиц и есть первопричина калибровочной инвариантности. [11] Наиболее просто взаимосвязь условия m||||| = 0 и GAMMA калибровочной инвариантности показана в ст.: Вайнберг С. Свет как фундаментальная частица//УФН. 1976. Т.120. С.677. Подробнее о калибровочной инвариантности см. в кн.: Коноплева Н.П. Попов В.Н. Калибровочные поля. М.: Атомиздат. 1980; Окунь Л.Б. Физика элементарных частиц. М.: Наука, 1984.
Читать дальше