Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь есть возможность читать онлайн «Иосиф Розенталь - Геометрия, динамика, вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия, динамика, вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия, динамика, вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия, динамика, вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 2 заряд тела отсчета останется неизменным. Тогда работа не будет определяться исключительно разностью FI(x|)-FI(x|). Аналогичное рассуждение можно провести, полагая, что заряд тела отсчета изменится.

Однако в силу принципа суперпозиции (см.(44)), если оба тела соприкоснутся, заряд с одного тела может перейти на другое тело. Принцип суперпозиции вполне консистентен переходу заряда от одного тела к другому при условии сохранения суммы зарядов.

Таким образом, мы продемонстрировали закон сохранения заряда для системы, состоящей из двух тел. Далее мы поясним этот закон в общем случае и в случае нестатических систем. До сих пор мы анализировали простейшую физическую ситуацию электростатику. Однако вид калибровочной инвариантности однозначно определяет и самые общие уравнения движения и форму квантовой теории полей. Здесь же мы лишь наметим аргументацию этого утверждения. Дело в том, что его доказательство в полном объеме требует хорошего знакомства с квантовой теорией поля. Но даже и на таком уровне весь комплекс вопросов, основанный на принципе калибровочной инвариантности, на наш взгляд, изложен в литературе (особенно учебной) неполно. И этот факт прискорбен. Хотя, по нашему мнению, аксиоматическое изложение физики невозможно, однако выявление основных принципов и дедуктивное ее изложение кажется весьма целесообразным как с дидактических позиций, так и с точки зрения выявления общих граней разнородных физических объектов и теорий. Сейчас же в учебной литературе (в том числе в курсах теоретической физики) калибровочный принцип излагается походя, как бы между прочим. В специальной же литературе, посвященной калибровочной теории, обычно затрагиваются не все аспекты этого принципа. Мы попытаемся дать лаконичное и поэтому не слишком строгое изложение основных сторон этого принципа.

Калибровочный принцип обуславливается типом частицы переносчика взаимодействия. Достаточным условием калибровочной инвариантности является равенство нулю массы частиц-переносчиков.

Рассмотрим классическое движение, которое, как известно, определяется уравнениями Лагранжа. Уравнения Лагранжа определяются вариацией лагранжиана, который должен быть функцией от скаляров, которые естественно являются релятивистскими инвариантами.

Рассмотрим простейшее калибровочное поле электромагнитное. Допустим, что электромагнитное поле представляется релятивистским 4-вектором A|. Тогда из

i векторов можно образовать только два типа скаляров

i i (скалярных произведений): eA|dx| и aA|A| (здесь индекс i

i i пробегает значения i=1,2,3,4; e,a — постоянны). Пусть все реальные физические величины инвариантны относительно калибровочного преобразования:

A|' — > A| + DLf/DLx|, (45) i i i

где f — некоторая произвольная функция при калибровочных преобразованиях от 4-координат. Тогда можно написать следующее равенство:

i ∂(ef) i eA| dx| + —--- dx| = eA|dx| + d(ef), (46)

i DLx| i i

i

где d(ef) — полный дифференциал от функции ef. Однако прибавление полного дифференциала к лагранжиану не изменяет уравнения движения. Замена же (45) в квадрате

i вектора A|A| приводит к изменению лагранжиана, и,

i i следовательно, член A|A| нарушает калибровочную

i инвариантность уравнений движения. Следовательно, лагранжиан

i не может содержать скаляры типа A|A|. В теории поля

i демонстрируется, что эти члены могут появиться в том случае, когда частицы — переносчики взаимодействия — характеризуются ненулевой массой. Следовательно, чтобы удовлетворить условию (46), достаточно, чтобы масса частицы-переносчика была бы строго равна нулю. В электродинамике такой частицей является фотон. Экспериментально установлено, что масса фотона m||||| < 4.5*10**-16 эВ/с**2, это в 10**21 раз меньше массы GAMMA самой легкой частицы — электрона. Естественно полагать, что в соответствии с принципом калибровочной инвариантности m|||||=0. GAMMA

С другой стороны, из принципа неопределенности следует, что радиус действия сил, обусловленных частицей-переносчиком ~HP/mc. Для электродинамики это означает, что электромагнитные силы — дальнодействующие. Их радиус r|≈HP/m|||||c при m||||| = 0 равен бесконечности. Этот факт

GAMMA GAMMA для электростатики следовал из простых физических соображений (см. выше).

Ввиду исключительной важности калибровочного принципа мы здесь наметим другой вывод уравнения электродинамики в рамках квантовой теории.

В квантовой механике состояние представляется волновой функцией Ψ. Вообще говоря, функция Ψ — комплексное число; среднее значение какой-либо динамической величины A равно интегралу

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия, динамика, вселенная»

Представляем Вашему вниманию похожие книги на «Геометрия, динамика, вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия, динамика, вселенная»

Обсуждение, отзывы о книге «Геометрия, динамика, вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x