Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь есть возможность читать онлайн «Иосиф Розенталь - Геометрия, динамика, вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия, динамика, вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия, динамика, вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия, динамика, вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 2 dt dt**2

Однако при учете свойств инерциальной системы это выражение сильно упрощается. Действительно, в общем случае аргументы r и v = dr/dt исключаются вследствие эквивалентности инерциальных систем. Всегда можно выбрать систему, в которой в данный момент v=0. Производные высших порядков: d**3 r/dt**3, d**4 r/dt**4…. в общем виде также не могут определять движение, поскольку в этом случае, помимо выделенного класса систем отсчета (соответствующего v=const), существовали бы и другие привилегированные системы отсчета, удовлетворяющие условиям a = d**2 r/dt**2=const или b = d**3 r/dt**3=const и т. д. Поскольку рассматривается материальная точка, то естественно допустить, что она характеризуется единым параметром m=m|. Поэтому (14) можно

1 записать в форме

d**2 r Ф = Ф (m, — --). (15)

dt**2

Величина m — внутренняя характеристика тела, вторая производная d**2 r/dt**2 определяется взаиморасположением тела отсчета и материальной точки. В рамках ньютоновской механики обе величины абсолютно независимы. Поэтому естественно предположить, что они входят в выражение (14) в виде произведения

d**2 r Ф = Ф (m —---). (16)

dt**2

Назовем силой функцию F, обратную функции Ф, тогда получаем основной закон

d**2 r F = m —---. (17)

dt**2 [7] Строго говоря, здесь пренебрегается возможным вращением системы. Обобщение рассуждений, учитывающих вращение, не представляет трудностей.

Из свойств пространства вытекают характеристики дальнодействующих сил, составляющих основу классической механики.

Назовем дальнодействующими (макроскопическими) силами такие воздействия, которые в статическом случае (т. е. когда тело отсчета неподвижно) можно характеризовать силовыми линиями, начинающимися в теле отсчета, но не изменяющимися в пустом пространстве. Иными словами, в пустом пространстве силовые линии — прямые. Если же силовые пересекают материальную точку, то они взаимодействуют с ней, прекращая свое существование.

Заметим, что «прямолинейность» силовых линий нетривиальное допущение, которое характерно исключительно для дальнодействующих сил. Для микроскопических взаимодействий силовые линии либо запутываются, взаимодействую друг с другом, утрачивая прямолинейность (сильное взаимодействие), либо обрываются (слабое взаимодействие). На современном языке необходимыми и достаточными условиями дальнодействия сил являются неравенства

ALPHA << 1, m| = 0,

c

где ALPHA — безразмерная константа взаимодействия, m|

c массам обменной частицы (см. Дополнение). Далее в этом разделе ограничимся исключительно дальнодействующими макроскопическими силами.

Поскольку силовое воздействие является точечным и осуществляется в месте расположения материальной точки, то единственная характеристика сил, обусловленная этим расположением, есть плотность d силовых линий. Поэтому сила, действующая на материальную точку, пропорциональна плотности силовых линий: F~d. Но в силу изотропии и однородности пространства полное число силовых линий неизменно, а плотность силовых линий неизменно, а плотность силовых линий макроскопического взаимодействия обратно пропорциональна площади сферы с центром, расположенным в начале координат (теле отсчета). Эта сфера проходит через материальную точку. поскольку площадь сферы в трехмерном евклидовом пространстве пропорциональна r**2 (r — расстояние между телом отсчета и материальной точкой), то

F~1/r**2. (19)

Мы получили выражение для макроскопических сил: силы Кулона и силы Ньютона.

Таким образом, оба закона — следствие особых свойств трехмерного евклидова пространства.

Следовательно, как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию тесной связи основ динамики и свойств пространства, нельзя полностью свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил. Можно (как это происходило в действительности) на опыте измерить зависимость (19), на более современном уровне установить соотношения (18), которые также являются следствием экспериментов.

Однако общие соотношения отражают свойства пространства, и наша цель — демонстрация тесной связи этих свойств и простейшей динамики.

4. ПРОСТРАНСТВО СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ(ПРОСТРАНСТВО МИНКОВСКОГО)

Теории относительности посвящено огромное число книг, написанных на разных уровнях. Поэтому нецелесообразно представлять здесь систематическое изложение этой теории. Идея этого и следующего разделов несколько скромнее: очертить лаконично идею взаимосвязи геометрии и динамики, обусловленную созданием теории относительности, которая изменила сам стиль этой взаимосвязи. Ранее (в ньютоновской механике) эта взаимосвязь проявлялась как бы неявно: в определении инерциальной системы, мельком упоминалась при выводу законов сохранения и т. д. После утверждения теории относительности единство геометрии и динамики стало краеугольным камнем физики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия, динамика, вселенная»

Представляем Вашему вниманию похожие книги на «Геометрия, динамика, вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия, динамика, вселенная»

Обсуждение, отзывы о книге «Геометрия, динамика, вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x