Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь есть возможность читать онлайн «Иосиф Розенталь - Геометрия, динамика, вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия, динамика, вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия, динамика, вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия, динамика, вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Решение основной проблемы классической механики предполагает априорное определение физического пространства, в котором движутся материальные точки. В рамках ньютоновской физики оно отождествляется с пространством Евклида.

Одна из задач механики — вычисление траектории тела (материальной точки) в этом пространстве.

Траектория описывается математической кривой, однако не тождественна ей. Математическая кривая — образ, существующий безотносительно к другим объектам или системам координат. Этот образ возник задолго до создания аналитической геометрии. Иное дело — физическая траектория. Это понятие имеет лишь относительный смысл: траектория материальной точки определяется относительно другого тела, обычно называемого телом отсчета.

Абсолютного движения не существует. По этой причине физики предпочитают говорить не о системе координат, а о системе отсчета, подразумевая, что это понятие включает также и тело отсчета. Если оно может быть отождествлено с материальной точкой, то его обычно принимают за начало координат. Подчеркнем, что здесь мы встречаемся не с терминологическими уточнениями. В отличие от начала координат тело отсчета, как правило, влияет, а иногда и определяет состояния исследуемого тела (материальной точки).

В классической динамике пространство определяет взаиморасположение тел в данный момент времени в их противопоставлении к пустоте (в классическом смысле). Несколько перефразируя определение времени, данное в предыдущем разделе, можно сказать, что пространство есть мера неупорядоченной эволюции относительно состояния тела. Это определение, так же как и предшествующее, нуждается в некоторых комментариях.

Пространственные соотношения характеризуют относительное положение материальных тел, включая и тело отсчета. Временные же соотношения также включают точку отсчета, но эта точка относится к тому же самому телу, время эволюции которого определяется.

Но кардинальным физическим отличием пространства от времени является факт, что первое не содержит аналога принципа причинности. Расстояния между двумя произвольными точками A и B пространства (взятые безотносительно ко времени) эквивалентны: AB=BA. Временные же интервалы t|t| и

1 2 t|t| (t| > t|) существенно неэквивалентны. Время t| 2 1 2 1 2 будущее относительно времени t. Иллюстрацией этих положений является система двух событий (At|, Bt|), причинно-связанных

1 2 между собой. Событие At| влияет на событие Bt|, обратное

1 2 влияние отсутствует. Однако тела, расположенные в точках A и B, симметричны. Их пространственная характеристика — вектор — > — > AB эквивалентен вектору BA.

В основе ньютоновской механики находится понятие инерциальных систем отсчета, играющее особую роль, поскольку, строго говоря, законы Ньютона относятся именно к этому классу систем отсчета. К сожалению, как это часто бывает с основополагающими понятиями, определения инерциальной системы многообразны и не полностью отражают ее свойства, что может привести, а иногда и приводит к недоразумениям.

Однако полный анализ понятия инерциальной системы отсчета выходит за рамки основной темы, и далее мы ограничимся лишь кратким его рассмотрением. Пока же примем наиболее популярное определение инерциальной системы отсчета, представленное в классическом курсе теоретической физики Л.Д.Ландау и Е.М.Лифшица:

«…можно найти такую система отсчета, по отношению к которой пространство является однородным и изотропным, а время однородным. Такая система называется инерциальной».

Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М., Наука, 1973. Т.1. Механика. С.14.

Из этого определения следует ограниченность понятия инерциальной система отсчета. Оно приложимо к (квази)точечным телам — материальным точкам. Макроскопическое тело, состоящее, по определению, из многих точечных тел, само выделяет из первичного пространства Евклида объем, нарушающий его однородность и изотропию. Следовательно, использование понятия инерциальной системы применительно к макроскопическим телам, вообще говоря, неоправданно. И действительно, существует ряд парадоксальных физических ситуаций (релятивистское преобразование температуры, выбор формы электромагнитного тензора энергии-импульса в макроскопических телах и т. д.), когда отсутствует однозначное решение четко и корректно сформулированной проблемы. На наш взгляд, эта неоднозначность обусловлена чрезмерно широким употреблением понятия инерциальной системы. Но подробнее обсуждение этой проблемы находится вне основной линии книги. Мы лишь во избежание недоразумений будем использовать инерциальные системы для (квази)точечных тел.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия, динамика, вселенная»

Представляем Вашему вниманию похожие книги на «Геометрия, динамика, вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия, динамика, вселенная»

Обсуждение, отзывы о книге «Геометрия, динамика, вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x