Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь есть возможность читать онлайн «Иосиф Розенталь - Геометрия, динамика, вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия, динамика, вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия, динамика, вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия, динамика, вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вернемся снова к рис. 3. Круг и цилиндр на нем расслоение полусферы, изображенной в верхней его части. Построим на полусфере треугольник, образованный геодезическими линиями — отрезками больших кругов. Разумеется (поскольку сфера — неевклидова поверхность), сумма углов треугольника не равна π. Спроецируем точки треугольника на круг (базу), параллельный основанию полусферы. Прямые, осуществляющие проецирование, будем полагать слоями расслоенного пространства.

Произведем далее операцию параллельного переноса на полусфере вдоль контура треугольника. Поскольку полусфера неевклидова поверхность, то при полном обходе треугольника (возвращение вектора в точку, совпадающую с началом вектора a) между направлениями первичного и конечного векторов (стрелки на рисунке) образуется некоторый угол — связность.

Обобщим это понятие на расслоенное пространство. С этой целью спроецируем треугольник на круг (базу). Прямые, осуществляющие проекцию, — слои пространства. Проекции начального и конечного векторов на полусфере образуют на круге некоторый угол v ≠ 0, который является компонентой связности в базе.

Чтобы определить связность в слоях, введем расстояние от начала слоя (отрезка), которое является, вообще говоря, произвольной точкой отсчета. Важно лишь, чтобы во всех слоях были бы одинаковые точки отсчета. Иначе говоря, любой круг, пересекающий слои и параллельный основанию полусферы, мог бы определить точки отсчета. Естественно (но не необходимо) отождествить точки отсчета с точками круга — базы. Будем далее измерять угол между векторами во время параллельного переноса в произвольных единицах (например, радианах) и откладывать этот угол на прямых — слоях пространства. В результате операции полный обход периметра треугольника на сфере будет соответствовать некоторому подъему величины проекции в слое. Этот подъем определяется смещением векторов в полусфере при возвращении в точку, совпадающую с началом вектора a после полного обхода контура. В пространстве слоев

1 начало обхода на полусфере соответствует точке a|, конец 1 1 1 d| (см. рис. 3). Таким образом, расстояние a|d| характеризует связность в слое.

Расслоение полусферы на круг и линейное пространство одно из простейших расслоений, позволяющих дать наглядную интерпретацию связности расслоенного пространства. В общем случае подобная наглядность утрачивается. Идея введения общего определения связности близка к основной идее дифференциальной геометрии: в малом объеме метрика пространства евклидова или псевдоевклидова. В расслоенных пространствах также постулируется простота пространства в малом. Полагается, что в малом расслоенное пространство можно представить простым произведением, частным случае которого и было расслоение полусферы.

В результате обхода микроконтура в полном пространстве или базе определяется компонента связности в базе. Далее в соответствии с приведенным выше примером операция обхода микроконтура количественно отображается в пространстве слоев, определяя таким образом связность в этом пространстве.

В заключение сделаем одно замечание, имеющее, как мы увидим далее, прямое отношение к физике (динамике). Хотя значение связности определяется однозначно, однако операция ее вычисления неоднозначна. Это утверждение — следствие

1 неоднозначности в выборе начальной точки отсчета a|. Сделанный нами выбор: начало обхода контура соответствует пересечению слоя (прямой) и базы (круга) — обусловлен

1 простотой. Точку a| можно было бы сместить вдоль соответствующей прямой (слоя) на произвольную величину.

1 Связность определяется не положением точки a|, а разностью

1 1 отрезком a|d|.

ГЛАВА 2. Д И Н А М И К А

1. ВРЕМЯ

Классическая геометрия (Евклида, Лобачевского, Римана) по своему существу статична. И хотя в ее пределах правомочна операция переноса фигур, но она имеет лишь одно предназначение: установление их равновеликости. Поэтому этот перенос (как правило, мысленный) может осуществляться бесконечно быстро или сколь угодно медленно. Скорость переноса, а следовательно, и его время геометров не интересовали. Геометрия была вне времени. Видимо, время было тем фактором, который более всего способствовал тому, что до конца прошлого столетия геометрия и физика существовали раздельно.

Можно точно указать годы, когда зарождалось представление об общности геометрии и времени и когда это представление приобрело ясную и недвусмысленную формулировку. Идея единства пространства-времени была сформулирована Г.Минковским в 1907 г., ей предшествовало создание специальной теории относительности А.Эйнштейном, А.Пуанкаре и Х.Лоренцом в 1904–1905 гг.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия, динамика, вселенная»

Представляем Вашему вниманию похожие книги на «Геометрия, динамика, вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия, динамика, вселенная»

Обсуждение, отзывы о книге «Геометрия, динамика, вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x