Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь есть возможность читать онлайн «Иосиф Розенталь - Геометрия, динамика, вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия, динамика, вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия, динамика, вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия, динамика, вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Янг: «Это (расслоенные пространства. — И.Р.) приводит в трепет и изумление, поскольку вы, математики, выдумали эти понятия из ничего».

Черн: «Нет, нет! Эти понятия вовсе не выдуманы. Они существуют на самом деле».'

------------------------------' Янг Ч. Эйнштейн и физика второй половины XX века // УФН. 1980. Т.132. С.174. О расслоенных пространствах см. также ст.: Даниэль С., Виалле М. Геометрический подход к калибровочным теориям типа Янга — Миллса // УФН, 1982. Т.136. С. 377–420; Бернстейн Г., Филлипс Э. Расслоения и квантовая теория // УФН. 1982. Т.136. С. 665–692. ------------------------------

Этот диалог весьма примечателен. Математики часто строят конструкции, кажущиеся физикам абстрактными, не связанными с физическими ценностями. Разные подходы математиков и физиков приводят к недооценке адекватности некоторых «абстрактных» математических методов физическим проблемам. В результате эти методы заново переоткрываются физиками. Пожалуй, классический пример подобной ситуации переоткрытие В.Гейзенбергом в 1925 г. матричного исчисления, которое он использовал для создания квантовой механики. Лишь после бесед с М.Борном он узнал, что теория матриц — хорошо разработанный раздел математики практически не используемый физиками.

После этих предварительных замечаний целесообразно перейти к изложению основных идей геометрии расслоенных пространств. Начнем с представления основных образов (картин) расслоенных пространств.

Первый связан с обобщением понятия точки. Точка в расслоенном пространстве эквивалентна автономному пространству. Иначе говоря, можно наглядно представить, что точка в расслоенном пространстве эквивалентна точке в смысле Евклида (объект, лишенный протяжения), к которой «прикреплено» (или лучше: которой соответствует) свое пространство. Можно представить расслоенное пространство в целом. Оно представляет совокупность большого числа (как правило, бесконечного множества) пространств, из которых одно, называемое базой, играет особую роль. Каждая точка этого пространства взаимно однозначно связана со своим пространством, называемым слоем над базой. Каждой точке в базе соответствует свое пространство (слой), отражающий структуру точки.

Приведем некоторые простейшие примеры расслоенных пространств. Пусть база — прямая, т. е. евклидово одномерное

1 пространство' R|. Каждой точке базы — прямой — соответствует

1 окружность S|, расположенная в плоскости, перпендикулярной базе, центром которой является данная точка базы. Радиусы всех окружностей одинаковы. Расслоенное пространство определено однозначно. В данном случае размерности слоев и базы одинаковы и равны 1. Полное расслоение пространства представляет цилиндр и его ось.

------------------------------' Символом R часто обозначают риманово пространство, частным случаем которого является пространство Евклида. Индекс вверху обозначает размерность пространства. Символ S

1 соответствует сферическим пространствам: S| — окружность,

2 S| — двумерная сфера и т. д. —----------------------------

Можно привести пример расслоенного пространства, в котором размерности базы и слоев различны. Пусть база

3 трехмерное евклидово пространство R|, а слои — двумерные

2 сферы S|.

Подчеркнем принципиальную разницу между обоими примерами. В первом случае и слой и база — одномерные фигуры. Полное расслоенное пространство — фигура трехмерная (цилиндр+прямая), и ее нетрудно вообразить воочию.

Второй пример расслоенного пространства не поддается такой наглядной интерпретации. Каждый его элемент — сфера с точкой базы в центре. Однако совокупное расслоенное пространство имеет пять измерений. Представление о нем как о множестве сфер, расположенных в трехмерном пространстве, неправильно. Слои-сферы находятся в дополнительных измерениях, и поэтому расслоенное пространство в целом нельзя изобразить адекватно на бумажном листе. Представление пространства доступно лишь с помощью аналитических методов.

≡=РИС. 1

≡=РИС. 2

В простейшем случае точки базы и слоев — действительные числа. Можно представить, что пространство слоев состоит из точек — мнимых чисел. Например, можно представить себе слой в виде сферы, каждая точка которого — мнимое число.

Приведем еще один пример. База — круг радиуса r (рис. 1). Над базой находится цилиндрический объем, ось которого проходит через центр базового круга перпендикулярно плоскости, в которой он расположен. В данном случае слоями являются прямые, расположенные внутри цилиндра, перпендикулярные основанию. Например, слою aa| соответствует

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия, динамика, вселенная»

Представляем Вашему вниманию похожие книги на «Геометрия, динамика, вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия, динамика, вселенная»

Обсуждение, отзывы о книге «Геометрия, динамика, вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x