Иосиф Розенталь - Геометрия, динамика, вселенная

Здесь есть возможность читать онлайн «Иосиф Розенталь - Геометрия, динамика, вселенная» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Геометрия, динамика, вселенная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Геометрия, динамика, вселенная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена проблемам современной физики и космологии. Рассматривается современная геометрия и ее связь с динамикой, новейшие модели эволюции Метагалактики, обсуждается проблема структуры физического пространства и его размерность. Все эти проблемы теоретической физики и космологии автор излагает для читателей, знакомых с общей физикой в объеме курсов, читаемых в вузах. Книга рассчитана на читателей, интересующихся современными достижениями космологии и физики.

Геометрия, динамика, вселенная — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Геометрия, динамика, вселенная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

≡=РИС. 4

Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s≥0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.

Графически можно можно все пространство-время (x,t) разделить на четыре области (рис. 4). Пусть две пересекающиеся линии соответствуют уравнениям x = ±ct. Тогда области внутри угла AOB соответствуют будущему; внутри угла COD — прошлому, а углам AOC и BOD — неопределенной ситуации, которая в общем случае зависит от движения системы отсчета. В этом смысле надо понимать сделанное выше замечание относительно тезиса Аристотеля (отсутствие настоящего). Настоящее, соответствующее одновременно происходящим в разных точках пространства событиям, есть понятие относительное. Оно зависит от движения системы отсчета.

Рассмотрим далее преобразование координаты x и времени t при переходе от одной системы отсчета (x,t) к другой (x',t'), движущейся со скоростью v относительно первой.

Условие, определяющее это преобразование, инвариантность интервала s=s'. Это условие определяет преобразование, которое является единственным с точностью до тривиального переноса начала системы отсчета

x' = x ch ψ + ct sh ψ,

(24) ct' = x sh ψ + ct ch ψ,

ψ — аналог угла поворота декартовой системы в евклидовом пространстве (ср. с преобразованием (13)). В формуле (24) ch и ch — гиперболические функции в отличие от обычных тригонометрических функций в соотношении (13). Эта разница определяется тем, что в евклидовом (двумерном) пространстве Inv = x**2 + y**2 — окружность, а в псевдоевклидовом пространстве Inv = t**2 — x**2 — гипербола.

Положим для простоты x=0. Это допущение не уменьшает общности рассуждений, однако сильно упрощает выкладки. Тогда

x' = ct sh ψ, ct' = ct ch ψ. (25)

Учитывая, что x'/t'=v, из (25) следует, что th ψ = v/c. Используя известные соотношения для гиперболических функций, легко получить

sh ψ = (v/c) [1-(v/c)**2]**(-1/2),

(26) ch ψ = [1-(v/c)**2]**(-1/2),

после чего из формул (24) и (26) следуют преобразования Лоренца:

x+vt x' = —--------,

-------,

\/ 1-(v/c)**2

(27)

t+vx/c**2 t' = —--------.

-------,

\/ 1-(v/c)**2

Из соотношений (27) следует:

1. При v/c<<1 преобразования Лоренца переходят в преобразования Галилея (12).

2. Интервалы длины и времени преобразуются соответственно:

^x ^x' = —--------,

-------,

\/ 1-(v/c)**2

(28)

^t ^t' = —--------.

-------,

\/ 1-(v/c)**2

Наметим далее вывод из метрических свойств пространства Минковского уравнения движения материальной точки

p=mu, (29)

где u — скорость частицы.

В ньютоновской механике v = dx/dt; m=const (t абсолютное время). Чтобы обобщить импульс в рамках теории относительности, нужно проделать две операции, специфические для теории относительности: 1) условиться о системе отсчета, в которой определяется время; 2) обобщить 3-мерные векторы ньютоновской физики на 4-мерное пространство Минковского. Иначе говоря, следует ввести 4-мерный вектор, который при v/c — > 0 переходил бы в 3-мерный евклидов вектор, а в рамках теории относительности был бы аналогом 4-вектора (t,x,y,z). Найдем 4-мерный аналог скорости v=dx/dt. В русле идей теории относительности существует выделенная (собственная) система отсчета, связанная с материальной точкой. Действительно, в этой системе величина dx=const и время t=τ однозначно связано с инвариантным интервалом ds. В том же случае, когда тело «истинно» точечное (dx=0), то ds=c d τ. Поэтому естественно в формуле для скорости положить

u=dx/d τ (23)

и на основании (23)

v|||||

x,y,z u||||| = —--------, x,y,z —-----,

\/ 1-(v/c)**2

где индексы x, y, z отмечают компоненты по соответствующим осям.

Чтобы величина u была бы 4-вектором, нужно доопределить четвертую компоненту. В нашем распоряжении есть единственная величина, имеющая размерность скорости: скорость света c. Поэтому аналог временной компоненты 4-скорости:

c u| = —--------. (32) t —-----,

\/ 1-(v/c)**2

Тогда выражение (29) для импульса можно записать в форме

p| = m|u|, i 0 i

ult m| — масса в собственной системе отсчета. Индекс i

0 отмечает номер компоненты 4-скорости. Легко проверить, что величины p| (i=1,2,3,4 или t,x,y,z) образуют 4-вектор.

i Действительно,

(p|)**2 — (p|)**2 — (p|)**2 — (p|)**2 = (m|c)**2 = Inv. (34) t x y z 0

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Геометрия, динамика, вселенная»

Представляем Вашему вниманию похожие книги на «Геометрия, динамика, вселенная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Геометрия, динамика, вселенная»

Обсуждение, отзывы о книге «Геометрия, динамика, вселенная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x