У того же Левантовского [Л1] доходчиво изложено, как делать этот правильный расчёт скачка «истинной» скорости аппарата. Пусть аппарат выведен на т.н. гомановскую траекторию полёта к планете-цели – наиболее энергетически выгодную. Такая траектория представляет собой, упрощённо, половину околосолнечного эллипса, перигелий и афелий которого касаются орбит Земли и планеты-цели. Если планета-цель более удалёна от Солнца, чем Земля, то, при подлёте к планете, гелиоцентрическая скорость аппарата меньше орбитальной скорости планеты. В этом случае переход границы области планетарного тяготения возможен лишь через её переднюю полусферу: планета догоняет аппарат. Чтобы найти вектор начальной скорости аппарата в планетоцентрической системе сразу после его входа в область тяготения планеты, следует из вектора скорости аппарата в гелиоцентрической системе вычесть вектор скорости орбитального движения планеты. Например, если Марс, орбитальная скорость которого равна 24 км/с, догоняет аппарат, движущийся в том же направлении со скоростью 20 км/с, то начальная скорость аппарата внутри области тяготения Марса будет равна 4 км/с и направлена противоположно вектору орбитальной скорости Марса. Таким образом, скачок модуля локально-абсолютной скорости ( 1.6) аппарата составит 16 км/с. Всё происходит аналогично и при влёте в область тяготения более близкой к Солнцу планеты, чем Земля – с той лишь разницей, что в этом случае переход границы происходит через её заднюю полусферу, поскольку здесь гелиоцентрическая скорость аппарата больше, чем орбитальная скорость планеты.
Теперь заметим, что скачок локально-абсолютной скорости аппарата (на десятки километров в секунду!) должен, согласно (1.8.2), вызвать скачок допплеровского сдвига несущей при радиосвязи с аппаратом – а ведь при узкополосности трактов у систем дальней космической связи, такой скачок выведет несущую далеко за пределы текущей рабочей полосы, и связь прервётся. Факты свидетельствуют о том, что именно по такому сценарию терялась связь с советскими и американскими автоматическими межпланетными станциями на всех первых подлётах к Венере и Марсу.
Из открытых источников (см., например, [ВЕБ1-ВЕБ3]) известно, что история первых запусков космических аппаратов к Венере и Марсу – это почти сплошная череда неудач: взрывов, «не выходов» на расчётную траекторию, аварий, отказов различных бортовых систем… Поступали так: в очередное «окно» во времени, благоприятное для запуска, космические аппараты запускали пачками – в надежде, что хотя бы один из них выполнит запланированную программу. Но и это мало помогало. Открытые источники умалчивают о том, что, на подступах к планете-цели, аппарат подстерегала непонятная беда: радиосвязь с ним терялась, и он «пропадал без вести».
Вот несколько примеров. В 1965 г., 12 ноября к «утренней звезде» была запущена межпланетная автоматическая станция «Венера-2», а 16 ноября, вдогонку – «Венера-3». Перед сближением с планетой связь с «Венерой-2» была потеряна. По расчётам, станция прошла 27 февраля 1966 г. на расстоянии 24 тыс. км от Венеры. Что касается «Венеры-3», то 1 марта 1966 г. её спускаемый аппарат впервые достиг поверхности планеты. Однако, в сообщении ТАСС умолчали о том, что и с этой станцией связь была потеряна на подлёте к планете [ВЕБ2]. А вот каким было начало «марсианской гонки». Межпланетная автоматическая станция «Марс-1»: запуск 01 ноября 1962 г., связь потеряна 21 марта 1963 г. Межпланетная автоматическая станция «Зонд-2»: запуск 30 ноября 1964 г., связь потеряна 5 мая 1965 г. Аналогичные вещи происходили и с американскими космическими аппаратами, причём один случай заслуживает особого внимания: « В июле 1969 г., когда «Маринер-7» достиг злополучного района космоса, где предыдущие аппараты пропали без вести, связь с ним была потеряна на несколько часов. После восстановления связи, к недоумению руководителей полёта, …его скорость в полтора раза превышала расчётную » [ВЕБ3]. Ясно, что восстановление связи произошло не само собой, а в результате удачной компенсации изменившегося допплеровского сдвига – поскольку именно по допплеровскому сдвигу судили о скорости аппарата. Лишь после того как научились, таким образом, восстанавливать пропадающую радиосвязь, один за другим посыпались успехи в межпланетной космонавтике.
Поскольку феномен скачков допплеровского сдвига, при пересечении аппаратом границы планетарного тяготения, совершенно не вписался в официальную теоретическую доктрину, представители официальной науки пытались замолчать этот феномен. Но – тщетно! Слишком широко известно, что на первых подлётах к Венере и Марсу пропадала связь с аппаратами. Мне лично доводилось беседовать со специалистами, которые, будучи верны научному долгу, до последнего отбрёхивались насчёт того, что связь, мол, пропадала вовсе не из-за каких-то там «скачков», а из-за того, что у аппаратов «сдыхало оборудование». Тогда спрашивается: почему различное оборудование у всех первых аппаратов «сдыхало» на одном и том же удалении от планеты ? И почему впоследствии, как по мановению волшебной палочки, оно перестало «сдыхать» вовсе? Ответов на эти простые вопросы специалисты до сих пор не выработали.
Читать дальше