Рис. 7.3.На верхнем рисунке мы видим искривленный путь между двумя фиксированными точками и другой искривленный путь, близкий к нему. На этих путях нарисованы волны с одинаковой длиной волны. Хотя они начинают путь с одной и той же амплитудой, когда они достигают конечной точки, их амплитуды сильно различаются. Если бы мы представили себе полный пучок волн, бегущих по близким путям, мы смогли бы увидеть, что амплитуды в конечной точке все очень различны и интерферируют деструктивно, давая в результате нулевую амплитуду. На нижнем рисунке мы видим то же самое, но для прямолинейного пути и одного из путей, близких к нему. В этом случае все волны, прибывающие в конечную точку, имеют очень похожие амплитуды и не интерферируют деструктивно. Мы делаем заключение, что при полной свободе передвижения по любому маршруту, единственным выживающим путем оказывается путь, близкий к прямой линии.
Теперь мы подходим к сути этой аргументации. Свет не знает заранее и не имеет необходимости знать, какой из путей окажется путем с наименьшим временем пробега: он испытывает все пути, но только на путях, очень близких к пути с наименьшим временем пробега, волны не гасят друг друга. Деструктивная и конструктивная интерференции становятся тем более точными, чем короче длина волны света, и только геометрическая прямая линия выживает при бесконечно малой длине волны, которая и является тем пределом, в котором физическая (волновая) оптика становится геометрической оптикой. Полная свобода действий дает в результате ясно выраженное правило . Это наипрекраснейший вид научного объяснения, когда волк полного отсутствия ограничений появляется в шкуре овечки систематического поведения, анархия появляется в виде правил, беспорядок служит основой порядка, а свобода обоснованием контроля.
Держа в уме это объяснение, обратимся к рассмотрению частиц. Путь частицы, в соответствии с классической механикой, определяется силами, действующими на нее в каждый момент (как мы это видели в главе 3). Однако, так же как и в случае распространения волн, мы можем свести это описание к утверждению, касающемуся полного пути. В 1744 г. французский математик и астроном Пьер-Луи Моро де Мопертюи (1698-1759) объявил, что путь, проходимый частицей, таков, что ассоциированная с ним величина, называемая действием , является минимальной. К своему принципу наименьшего действия Мопертюи пришел скорее из теологических, чем из физических соображений, поскольку в своем Essai de cosmologie (1759) он утверждал, что Божественное Бытие несовместимо ни с чем, отличным от предельной простоты и наименьшего расходования усилий. К несчастью для этой точки зрения, современная версия принципа признает, что в некоторых случаях частица выбирает путь наибольшего действия, поэтому более удачным названием является принцип стационарного действия. Для простоты мы ограничимся путями наименьшего действия.
Определение «действия», данное Мопертюи, было темным и менялось в зависимости от задачи, за которую он брался; тем не менее в нем заключалось зерно правильной идеи, которую выразил в математически строгой, но ограниченной форме шведский математик Леонард Эйлер (1707-83), а затем, почти в то же время, в 1760 г., Жозеф Луи Лагранж (1736-1813) придал ей окончательный вид. Эти исторические перипетии, однако, не должны нас отвлекать: важным здесь является то, что существует вполне определенная величина, называемая «действием» — представьте себе, что оно сродни «усилию» — и частица выбирает путь, соответствующий наименьшему действию, наименьшему усилию. Загадка, с которой нам немедленно приходится столкнуться — теперь я перефразирую слова, сказанные мною выше — состоит в следующем: откуда частица, как кажется, заранее узнает путь, дающий в результате наименьшее действие? Если она начала двигаться по неверному пути, не будет ли более экономичным по отношению к действию продолжить движение, чем возвращаться к источнику и начинать сначала?
Де Бройль был поражен аналогией между основными законами оптики и законами динамики частицы, выраженными в виде принципов наименьшего времени и наименьшего действия соответственно. Он видел, что проблема кажущегося наличия у частицы предварительного знания о том, какой путь будет соответствовать наименьшему действию, могла быть решена в точности тем же способом, что и для света, при условии, что с частицей можно ассоциировать волну . Тогда анархия приводила бы к закону: волны, ассоциированные с частицей, исследовали бы все пути между источником и местом назначения, и только те из них, которые соответствуют прямой линии (если нет никаких действующих сил, или, в более общем случае, если присутствующие силы действуют аналогично зеркалам и линзам) подверглись бы конструктивной интерференции и выжили бы в процессе взаимного уничтожения со своими соседями. Эта аннигиляция становилась бы все более точной с уменьшением длины волны этих «волн вещества», и в пределе бесконечно малой длины волны мы вновь получили бы вполне определенный путь в пространстве. Иными словами, появилась бы ньютоновская динамика с частицами, следующими по точным траекториям.
Читать дальше