Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Здесь есть возможность читать онлайн «Питер Эткинз - Десять великих идей науки. Как устроен наш мир.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Физика, Биология, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Десять великих идей науки. Как устроен наш мир.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Десять великих идей науки. Как устроен наш мир.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Десять великих идей науки. Как устроен наш мир.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Классическая физика могла объяснить закон Дюлонга и Пти с триумфальной легкостью из предположения, что тепло поглощается атомами, колебания которых становятся все более и более сильными. Поэтому представителей классической физики приводила в уныние необходимость признать, что этот закон неверен при низких температурах, а во многих случаях при комнатной температуре тоже. Проблема оставалась неразрешенной до тех пор, пока в 1906 г. на нее не обратил внимание необычайный ум Эйнштейна. Он принял концепцию осциллирующих атомов, но, вторя Планку, ввел решающее предположение, что атомы колеблются с энергиями, возрастающими скачками, как бы прыгая вверх по лестнице энергетических уровней. При низких температурах энергии окружения недостаточно, чтобы заставить атомы осциллировать. При высоких температурах имеется достаточно энергии, чтобы все атомы осциллировали, и теплоемкость выросла до классического значения Дюлонга и Пти. Эйнштейн сумел вычислить зависимость теплоемкости от температуры и получил довольно хорошее согласование с наблюдениями. Через несколько лет его модель усовершенствовал датский физик Питер Дебай (1884-1966), и это усовершенствование, не содержащее существенно новых идей, дало превосходное согласование с экспериментом.

Вклад Эйнштейна был решающе важным, потому что он распространил концепции, возникшие из исследования электромагнитного излучения, на чисто механическую систему колеблющихся атомов. Вирус совершил межвидовый переход от излучения к веществу.

Как только вирус обосновался в веществе, также как в излучении, болезнь подточила здоровье всей классической физики. Существуют даты и достижения вдоль всей линии развития, пролегающей от 1906 г., особенно порожденная богатым воображением, но несостоятельная модель атома водорода, предложенная в 1916 г. знаменитым датским физиком Нильсом Бором (1885-1962), которая, как сначала казалось, подтверждала применимость квантовых концепций к системе частиц. Однако решающей датой для нашего обсуждения явился 1923 г., когда вирус добрался до самого сердца вещества и разрушил понятие частицы.

Хотя такие серьезные ученые, как Ньютон, придерживались точки зрения, что свет состоит из частиц, так что введение фотона не оказалось полностью сюрпризом, ни один серьезный ученый — за исключением нескольких обаятельно предприимчивых и занимавшихся обширными спекуляциями древних греков — не придерживался точки зрения, что вещество подобно волнам. Тем не менее в 20-е гг., пока общественность хлопала ушами, в точности эта самая концепция появилась и пустила корни. Отцом идеи стал герцог Луи де Бройль (1892-1987), потомок семьи, введенной во дворянство Людовиком XIV.

Вклад де Бройля в этот революционный взгляд был основан на обнаруженной им аналогии между распространением света и распространением частиц. Он рассуждал релятивистски, но мы можем проникнуть в его аргументацию без этого усложнения. Главной чертой геометрической оптики, версии оптики, которая исследует, как отражаются от зеркал и преломляются линзами световые лучи в виде прямых линий, является то, что лучи движутся по путям, соответствующим кратчайшему времени пробега между источником и местом назначения. Это утверждение по существу является принципом наименьшего времени , предложенным в 1657 г. французским советником кассационной палаты и хотя и любителем, но выдающимся математиком Пьером Ферма (1601-65), как обобщение наблюдений, которые Герон из Александрии проделал около 125 г. до н.э. и изложил их в поздней «Катоптрике» . [30]Более точное название — принцип стационарного времени : странный оборот «стационарное время» просто означает, что время прохождения пути может быть либо минимальным, либо, в определенных случаях, максимальным. Мы ограничим наше обсуждение путями с наименьшим временем, но наши замечания легко можно распространить также и на пути с наибольшим временем. Загадка, с которой мы немедленно сталкиваемся, состоит в следующем: откуда свет, как кажется, заранее узнает путь, на прохождение которого будет затрачено наименьшее время? Если он начал двигаться по неверному пути, не будет ли более экономичным по времени продолжить движение, чем возвращаться к источнику и начинать сначала?

Волновая теория света приходит на помощь особо элегантным способом. Предположим, что мы рассматриваем произвольный путь между двумя заданными точками и представляем себе волну, извивающуюся по этому пути (рис. 7.3). Рассмотрим затем путь, лежащий очень близко к первому и волну, извивающуюся также и вдоль него. В пункте назначения гребни и впадины волн, прибывших этими разными путями, уничтожают друг друга: эта взаимная аннигиляция называется деструктивной интерференцией . Интерференция является характеристикой движения волн: она видна на поверхности воды, когда впадины одной ряби совпадают с гребнями другой, и смещение воды гасится. Однако существует один путь, для которого различие между гребнями соседних волн столь мало, что они не уничтожают, а усиливают друг друга: это взаимное усиление называется конструктивной интерференцией . Это явление также наблюдается в рябях на воде, когда гребни совпадают и смещение воды увеличивается. Пути, на которых интерференция конструктивна, это пути очень близкие к прямой линии — в общем случае, к пути с наименьшим временем пробега — между источником и пунктом назначения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Десять великих идей науки. Как устроен наш мир.»

Представляем Вашему вниманию похожие книги на «Десять великих идей науки. Как устроен наш мир.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Джеймс Чейз - Так устроен мир
Джеймс Чейз
Отзывы о книге «Десять великих идей науки. Как устроен наш мир.»

Обсуждение, отзывы о книге «Десять великих идей науки. Как устроен наш мир.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x