Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Различие между массой и весом, которое кажется настолько непринципиальным на Земле, является поэтому совсем не тривиальным, когда мы находимся в космическом пространстве, и легко может стать вопросом жизни и смерти.

Вторая космическая скорость

По мере того как объект падает на землю со все большей и большей высоты, время, которое требуется объекту, чтобы достичь ее, увеличивается, а объект приближается к земле со все более и более высокой скоростью. Если мы воспользуемся уравнениями 2.1 и 2.2, подставив в этих уравнениях значение a, равное 9,8 м/с 2(ускорение свободного падения), то можем сделать некоторые легкие вычисления. Тело, упавшее с высоты 4,9 метра, ударится о землю через одну секунду и будет перемешаться в момент соударения со скоростью 9,8 м/с. Если отпустить тело с высоты 19,6 метра, оно ударилось бы о землю через две секунды, а скорость его была бы соответственно 19,6 м/с. Если отпустить тело с высоты 44,1 метра, оно ударилось бы о землю через три секунды, перемещаясь в момент контакта с землей со скоростью 29,4 м/с.

Казалось бы, что если вы бы только могли поднять объект на достаточно большую высоту, то достигли бы такой высокой скорости соударения, какой вам захотелось. Конечно, это кажется верным, но только в том случае, если значение достается одним и тем же для любых высот.

Но значение g не является константой; оно уменьшается с высотой. Значение g изменяется обратно пропорционально квадрату расстояния от объекта до центра Земли. Точка подъема в 6370 километрах над поверхностью Земли будет на самом деле на высоте 12 740 километров от Земли, поскольку мы рассчитываем расстояние до центра — в два раза дальше от центра, чем от поверхности. А значение g на такой высоте равно всего лишь 1/ 4того, каким оно является на поверхности.

Объект, падающий из состояния покоя, с высоты 6370 километров над поверхностью Земли, в первую секунду разовьет скорость, равную лишь 2,45 м/с, вместо 9,8 м/с, которых он достиг бы после одной секунды падения в непосредственной близости от поверхности Земли.

Но поскольку тело продолжает падать и приближаться к Земле, значение g, конечно, постоянно возрастает и в конце падения достигает 9,8 м/с 2. Однако падающее тело не ударилось бы о поверхность Земли со столь же высокой скоростью соударения, как оно бы сделало, если бы значение g было равно 9,8 м/с 2на протяжении всего его пути вниз.

Представьте себе тело, брошенное сначала с высоты 1000 километров, затем — с высоты 2000 километров, затем — с 3000 километров и так далее. Падение с высоты в 1000 километров закончилось бы скоростью соударения, равной v 1. Если бы значение #было постоянным, то падение с высоты 2000 километров вызвало бы увеличение в скорости на первых 1000 километрах, равное увеличению на вторых 1000 километрах, так что окончательная скорость соударения была бы v 1+ v 2, или 2v 1. Однако верхние 1000 километров представляют собой ту часть расстояния, на котором значение g меньше, чем на более низких 1000 километрах. Соответственно движение по этой половине дистанции добавляет меньшее количество скорости, чем при движении по более низкой половине, и заключительная скорость соударения равна v 1+ v 2, где v 2меньше, чем v 1. Те же самые аргументы могут быть повторены для других частей дистанции, таким образом, падение с высоты 10 000 километров закончилось бы со скоростью соударения, равной v 1+ v 2+ v 3+ v 4и так далее, до v 10. Здесь каждый символ представляет собой часть заключительной скорости, привнесенной в окончательную все более и более высокими частями дистанции, каждая из которых равна 1000 километров, и значение каждого следующего символа меньше, чем таковое предшествующего.

Всякий раз, когда вы видите перед собой ряд чисел, каждое из которых меньше, чем предыдущее, имеется возможность наличия сходящегося ряда. В таком ряде сумма чисел никогда не превосходит некоторое установленное значение — предел суммы — независимо от того, сколько чисел добавлено. Наиболее хорошо известный случай такого сходящегося ряда — это 1 + ½ + ¼ + 1/ 8+ 1/ 16, в котором каждое следующее число — половина предыдущего. Сумма первых двух чисел — 1,5; сумма первых трех чисел — 1,75; сумма первых четырех чисел — 1,875; сумма первых пяти чисел — 1,9325 и так далее. По мере добавления в ряд все большего количества чисел сумма становится все больше и приближается к 2, никогда не достигая его. Предел суммы этого своеобразного числового ряда равен 2.

Оказывается, что числа, представляющие собой приращения скорости, получаемые в результате падения тела со все большей высоты, действительно образуют сходящийся ряд. Поскольку тело падает со все большей и большей высоты, окончательная скорость соударения не увеличивается беспредельно; вместо этого она имеет тенденцию стремиться к некоторой предельной скорости, превзойти которую не может.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x