Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

70. Иттербий … 168, 170, 171, 172, 173, 174, 176

71. Лютеций … 175, 176

72. Гафний … 174, 176, 177, 178, 179, 180

73. Тантал … 180, 181

74. Вольфрам … 180, 182, 183, 184, 186

75. Рений … 185, 187

76. Осмий … 184, 186, 187, 188, 189, 190, 192

77. Иридий … 191, 193

78. Платина … 190, 192, 194, 195, 196, 198

79. Золото … 197

80. Ртуть … 196, 198, 199, 200, 201, 202, 204

81. Таллий … 203, 205

82. Свинец … 204, 206, 207, 208

83. Висмут … 209

Может показаться странным, что радиоактивность не была обнаружена ранее, особенно на примере калия–40, так как калий — вполне обычный химический элемент, а у калия–40 (входит в список элементов табл. 9) период полураспада короче, чем у урана–238 и урана–232, поэтому он и более радиоактивный.

На то есть две причины. Во-первых, в природе калий–40 встречается довольно редко: из 10 000 атомов калия только 1 является атомом калия–40. Во-вторых, хотя и уран, и торий являются родителями ряда очень радиоактивных элементов, именно их дочерние элементы порождают явления, которые наблюдали Беккерель и Кюри.

Ни один из радиоактивных элементов с длинным периодом полураспада, являющийся изотопом более легких элементов, не может быть родителем радиоактивного ряда. Они испускают бета-частицу и тут же становятся стабильными изотопами элемента с атомным числом, больше на 1. Таким образом, рубидий–87 становится устойчивым стронцием–87, лантан–138 становится устойчивым церием–138 и т. д.

У калия–40 все немного по-другому. Около 89% всех распадающихся атомов калия–40 действительно излучают бета-частицу и превращаются в устойчивый кальций–40. Ядра оставшихся 11% атомов поглощают электрон К-оболочки (см. гл. 5), и этот процесс получил название К-захват. Этот захваченный электрон нейтрализует положительный заряд протона, и в итоге в ядре появляется еще один нейтрон. При этом количество нуклонов не меняется, а следовательно, и атомный вес остается прежним, но вот атомное число уменьшается на 1. Путем К-захвата калий–40 (атомное число 19) становится устойчивым аргоном–40 (атомное число 18).

В какой-то мере самым необычным из всех стабильных изотопов является водород–2, ядро которого состоит из одного протона и одного нейтрона, в отличие от ядра водорода–1, которое состоит только из одного протона. Соотношение разницы массы у этих двух элементов намного больше, чем у двух любых стабильных изотопов любого другого элемента.

Например, масса урана–238 в 238/235, или 1,013, раза больше массы урана–235, олова–124 (самый тяжелый изотоп этого элемента) — в 1,107 раза больше массы олова–112 (самого легкого). Масса кислорода–18 в 1,125 раза больше массы кислорода–16. А масса водорода–2 в 2 раза больше массы водорода–1.

Эта огромная разница относительной массы двух изотопов водорода говорит о том, что по физическим и химическим свойствам эти два элемента отличаются друг от друга сильнее, чем изотопы других веществ. Точка кипения обычного водорода 20,38 °К, а у водорода–2 («тяжелый водород») — 23,50 °К.

Опять-таки плотность обычной воды — 1000 граммов на кубический сантиметр, а температура замерзания 273,1 °K (0 °С), в то время как у воды, молекулы которой состоят из водорода–2 («тяжелой воды»), плотность 1,108 грамма на кубический сантиметр, а температура замерзания — 276,9 °К (3,8 °С).

Учитывая все особенности водорода–2, ему дали особое название — дейтерий (от греч. «второй»). Его символ — D, и формула тяжелого водорода выглядит как D 2, а тяжелой воды — D 2O.

Физики предположили возможность существования дейтерия еще в самые первые годы изучения изотопов, так как атомный вес водорода был немного выше, чем он должен быть.

Таблица 9.
ЛЕГКИЕ РАДИОАКТИВНЫЕ НУКЛИДЫ
(Нуклид … Период полураспада (лет))

Калий–40 … 1 300 000 000

Рубидий–87 … 47 000 000 000

Лантан–138 … 110 000 000 000

Самарий–146 … 106 000 000 000

Лютеций–176 … 36 000 000 000

Рений–187 … 70 000 000 000

Платина–190 … 700 000 000 000

Как показали подсчеты, энергетические уровни единственного электрона водорода–1 и водорода–2 распределены немного по-разному, поэтому в спектре водорода должны присутствовать слабые линии водорода–2. Однако этого не наблюдается, да и масс-спектрографом водород–2 обнаружен не был. Возможно, причина кроется в том, что водород–2 в природе встречается довольно редко: из 7000 атомов водорода только один является атомом водорода–2.

В 1931 году американский химик Гарольд Юри (1893–1981) решил провести следующий эксперимент. Он оставил 4 литра водорода испаряться до 1 куб. см, полагая, что поскольку водород–2 испаряется медленнее, то он сконцентрируется в этой «последней капле». Юри оказался прав. В спектре последней капли он обнаружил линии дейтерия точно там, где они, по расчетам, и должны были быть.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x