Японский ученый Ока решил задачу о распаде уже сформировавшегося неподвижного кольца. Она аналогична рэлеевской, ведь кольцо— замкнутый цилиндр. Оказалось, что число частей при распаде зависит от отношения толщины кольца к его диаметру. Много позже моих опытов по установлению условий дробления в иностранной литературе появились фотографии падающей в воздухе и дробящейся капли. Последовательность фаз деформации на фотографиях нам теперь понятна, она результат распределения давлений на шаре (см. рис. 13). Получается, что разрежение в кормовой части оттягивает, а давления в лобовой плющат и продавливают исходную форму. При этом разрежения по боковому поясу (в поперечном сечении) отсасывают жидкость на периферийную окружность. Возникший вначале диск с центральной вмятиной превращается в кольцо, обтянутое колпаком жидкой пленки, она быстро рвется. Остается неустойчивое кольцо, распадающееся на симметричные или антисимметричные волны — капли при обязательных спутниках, мелких шариках Плато. С готовым кольцом математика еще справляется, но рассчитать деформацию «капля — кольцо» никому не удается.
Странное дело: сколько раз нам уже попадалась кольцевая форма. Радуга, кольцевая волна, отделившаяся от пелены центробежной форсунки, теперь кольцо из жидкого шарика в воде, из капли в воздухе. Если вы занимаетесь каплями, жидкое кольцо часто будет сопровождать вас, как рондо повторяющейся мелодии. В этом, наверное, проявляется круговая симметрия нашего видимого мира, симметрии силовых и волновых полей.
Эксперименты по дроблению капель завершились, и я успел до конца года представить научный отчет по внеплановой теме.
План научно-исследовательских работ в институтах того времени не был столь жестким и всепроникающим, как потом. Иногда (и далеко не всем) разрешалось то, что летчики военной поры называли свободной охотой: полет в определенном направлении, но без конкретного задания — цели для атаки выбираются «по ходу дела». Я не за бесплановость или растягивание сроков, но жизнь показывает: план в науке иногда может и должен стать понятием растяжимым. Бывает, что план, как окостеневший панцирь, мешает росту живого организма исследования.
Научный работник обычно сам принимает участие в планировании, выдвигая тему, а иногда и сроки. И сам же часто попадает в свой капкан. Оценить время работ по новой теме, когда основная идея до конца и в деталях не ясна, чрезвычайно трудно. А если вдруг по ходу дела обозначился новый, более обещающий поворот? Откуда взять резерв времени? Мы придаем должное значение материальным и другим резервам, а почему со временем должно быть иначе? Из своего горького опыта я вывел правило: «коэффициент запаса» — планируемый интервал времени, который на первый взгляд кажется вполне достаточным,— умножай на два, тогда, работая с полным напряжением, едва уложишься в срок.
К слову, об оценке результатов исследовательских работ: проблема непростая и по сей день актуальная. Все зависит от научной и практической значимости задачи. Иногда и отрицательный результат (полученный с точностью до «наоборот») полезен. В других случаях добытые материалы без серьезного анализа точностей вообще не имеют ценности. А есть еще и такие темы: если в конце узнаешь хотя бы, как следовало ставить работу в начале,— считай результат положительным.
Как сделать туман!
Первый этап моих исследований, возникший из случайного наблюдения, завершился. Опыты проводились на сравнительно крупных каплях, диаметром 0,8—3 миллиметра. Предстоял второй этап. Нужно было доказать универсальность свойства дробления движущихся капель вплоть до самых мелких, обитающих в камерах сгорания. Вопрос этот оставался открытым, ведь мелкая капля быстро увлекается потоком, при этом ее относительная скорость и активные силы падают, деформация не успевает дойти до критической фазы, и распад не происходит.
Переход к более мелким частицам серьезно усложнял эксперимент. Но прежде всего мы нуждались в этих самых мелких частицах. Так в пятидесятые годы возникла проблема точно калиброванных капель. Требовался Прибор, «штампующий» строго однородные капли заранее Известного диаметра, хотя бы до 100—200 микрометров.
Обычные пипетки давали капли порядка два-три миллиметра. «Штучное» производство ртутных капель под микроскопом в первых опытах было решительно пресечено нашей охраной труда.
Читать дальше