Получается удивительно странное заключение: как будто бы солнечные недра — неподходящая среда для ядерных реакций.
Казалось бы, не спасает положения и то, что в редких случаях из-за особо сильных и частых толчков, направленных в одну сторону, плазменные частицы вдруг приобретают колоссальные скорости — в сотни и тысячи выше средней. Даже столь стремительно мчащиеся ядра не могут, по обычным представлениям, пробить собственную электрическую броню.
Как же разрешить это противоречие? Ведь энергия Солнца может быть только ядерной, а ядерные процессы в его недрах, выходит, запрещены!
Не тревожьтесь. Запрет этот — мнимый. Он наложен классической физикой — любительницей всякого рода тупиков и порочных кругов. И он снимается подлинным «законодателем» микрочастиц и микропроцессов — квантовой механикой.
В этой важнейшей отрасли физики нам пришла пора разобраться поподробнее.
КОНСТИТУЦИЯ МИКРОМИРА
Мы уже не раз сталкивались с поразительным своеобразием поведения мельчайших частиц. Атомы передают друг другу энергию не непрерывным ручейком, а непременно отдельными, строго отмеренными порциями. Электроны движутся в атомах не где попало, а всегда по неизменным путям — орбитам. Атомные ядра связываются каким-то невообразимым мезонным обменом. Свет ведет себя и как волны и как частицы...
Спору нет, удивительные вещи!
Но мы не вкусили еще, пожалуй, самых парадоксальных «чудес» микромира.
В чем они заключаются?
Раньше всего расскажем вкратце об основе основ квантовой механики — так называемом «соотношении неопределенностей», которое вывел немецкий физик Гейзенберг.
Перенесемся сначала в идеально тихую комнату, где не шелохнется воздух, куда не доходят извне никакие, даже самые слабые толчки, шорохи, звуки. В этой комнате мы стреляем из лука по мишени.
Ничто непредвиденное нам не мешает. Зная начальное положение стрелы, ее вес, форму, учтя силу натяжения тетивы и плотность воздуха, можно в принципе добиться самой меткой стрельбы. Методы классической механики дают возможность перед выстрелом идеально учесть все начальные условия и с любой точностью заранее рассчитать путь летящей стрелы.
А теперь призовем на помощь волшебника, который, правда, сыграет чисто подсобную роль: удалит из нашей тихой комнаты абсолютно весь воздух, выдаст нам кислородные приборы, наделит нас способностью мгновенно соображать и делать математические расчеты, а вместо лука и стрел предложит нам фантастический «пистолет» стреляющий электронами.
Мы опять хотим стрелять без промаха и стремимся идеально вычислить путь полета частицы. Вооружившись приборами, стараемся точно зафиксировать положение и скорость электрона, когда он вылетает из дула «пистолета».
И тут оказывается, что у нас ничего не выходит .Электрон словно ускользает от измерений. Если нам удалось узнать, где он, абсолютно невозможно выяснить с нужной точностью как скороон движется. Наоборот, если мы определим его скорость нам стало недоступно его точное местонахождение.
То хвост застрял, то нос увяз!
И как мы ни совершенствуем свои приборы сколько измерении ни делаем, электрон упрямо не желает сообщать одновременно обе основные характеристик своего движения: местонахождение и скорость. «Пожалуйста словно говорит он, - измеряйте что-нибудь одно, а второе пусть уж останется в некоторых пределах нёопределенным. Иначе я не могу, такова уж моя природа».
В этом-то и заключается сущность главного закона микромира - соотношения, найденного Гейзенбергом.
Количественно оно выражается неравенством :
Как видно из неравенства, уточнение координаты неизбежно влечет за собой «расплывание» импульса. И, скажем, если ∆ x ничтожно мала (координата определена весьма точно), то ∆ p чрезвычайно велика (импульс весьма неопределенен).
* 1Ради простоты в предыдущих рассуждениях мы говорили не об импульсе, а о скорости микрочастицы. Это допустимо, ибо масса частицы вносит лишь количественные изменения и не влияет на качество процесса.
Вот вам основной закон — «конституция» микромира.
Читать дальше