Не думайте, впрочем, что даже сейчас будет легко ответить на такой вопрос.
МЯЧ С ОТОПЛЕНИЕМ
Юный спортсмен уселся возле печки и надувает только что купленный волейбольный мяч. Натужился, раскраснелся, из последних сил посылает в резиновую камеру добавки воздуха. И вот уже мяч тугой, крепкий. Уронишь— подпрыгнет до потолка!
«Хорош», — решает его хозяин и бежит во двор.
Но там его ждет разочарование.
Мяч быстро становится мягким и прыгает совсем плохо.
«Видно, спускает», —думает наш,спортсмен и бежит домой, чтобы отыскать в камере дырочку и сделать заплатку.
Однако дома мяч будто снова сам надувается.
Что за диво!
Никакое не диво.
Если бы юный спортсмен не зевал на уроках физики, он не стал бы надувать мяч в теплой комнате, да еще возле печки. Ведь играть-то приходится во дворе, а там холоднее, чем в доме. Воздух в мяче охлаждается — значит, молекулы его движутся не столь быстро, не так сильно ударяют изнутри в стенки камеры, слабее ее распирают.
Газовое давление тесно связано с температурой.
А теперь давайте, вопреки правдоподобию, допустим, что волейбольное состязание должно состояться где-то в Антарктике, при температуре 70 градусов холода. Вдобавок игроки потеряли насос. Ртом же без риска для жизни мяч можно надуть только в помещении. Как же на лютом морозе уберечь мяч от потери упругости? Средство есть. Внутри него надо устроить... отопление. В самом деле, стоит поместить там какую-нибудь миниатюрную электропечку, питающуюся от компактной батарейки, — и задача решена. Воздух в камере станет снаружи остывать, а изнутри — подогреваться. Если подогрев окажется столь же интенсивным, как и остывание, то температура воздуха в мяче не будет снижаться и упругость останется неизменной.
Солнце, оказывается, имеет некоторое сходство с нашим отапливающимся мячом. Как и внутренность мяча, Солнце представляет собой шарообразное скопище газа. Правда, оно не окружено внешней оболочкой. Но есть сила, сдерживающая солнечное вещество, — тяготение.
Тяготение стремится сжать Солнце, превратить его в маленький плотный комок. Однако этой силе упорно противостоит газовое давление, рожденное, как и в нашем мяче, теплотой, высокой температурой. Газовое давление, наоборот, стремится раздвинуть солнечное вещество вширь.
Мы знаем, что Солнце не сжимается и не расширяется.
Значит, единоборство газового давления и тяготения оканчивается ничейным результатом.
Светило находится в равновесии.
В мяче газовое давление одинаково по всему объему.
А в Солнце? Конечно, нет.
В недрах, где сказывается тяжесть вышележащих слоев, оно гораздо выше, чем на поверхности.
Теперь вспомним, что увеличение газового давления связано с повышением температуры.
Стало быть, в глубинах светила вещество разогрето сильнее, чем на поверхности.
Изложив все эти рассуждения языком математических формул, учтя закон тяготения, массу и размер Солнца, можно довольно точно оценить температуру солнечных недр.
Сделав расчеты, физики убедились, что в самых далеких глубинах светила она достигает примерно 13 миллионов градусов.
МНИМЫЙ ЗАПРЕТ
Нам, с трудом переносящим сорокаградусную жару, просто немыслимо представить себе температуру солнечных глубин.
При 13 миллионах градусов нет ничего похожего на обычное земное вещество. Нет ни твердых тел, ни жидкостей, ни даже привычных нам газов. Развивая колоссальные скорости беспорядочного теплового движения атомы вдребезги разбивают свои электронные оболочки и теряют электроны. Поэтому глубинный солнечный газ представляет собой вещество, состоящее из электрически заряженных частиц. Это так называемая плазма. Она, кстати сказать, «гуще» обычного газа (взамен каждого атома получается несколько частиц — «голое» атомное ядро и электроны). В недрах светила плазма настолько сжата тяжестью вышележащих слоев, что весит в несколько раз больше свинца. Но вот к какому выводу пришли сначала физики. Даже при столь тесном взаимодействии частиц атомные ядра должны, казалось бы, оставаться неприкосновенными. Электрическое поле положительного заряда так сильно расталкивает их в разные стороны, что они на первый взгляд не способны не только ударяться друг о друга, но и подходить на близкое расстояние.
Читать дальше