Яков Гегузин - Живой кристалл

Здесь есть возможность читать онлайн «Яков Гегузин - Живой кристалл» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1981, Издательство: «Наука», Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Живой кристалл: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Живой кристалл»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга содержит научно-популярное изложение современных представлений о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их физические свойства и эксплуатационные характеристики. Рассказано о движении атомов, составляющих решетку, о характеристиках и свойствах различных дефектов строения реальных кристаллов, о том, как кристалл хранит воспоминания о своем прошлом, повлиявшем на его структуру. Используемые в книге формулы вполне доступны овладевшему лишь начальными сведениями из алгебры. Книга рассчитана на всех лиц, интересующихся современным естествознанием.

Живой кристалл — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Живой кристалл», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Исключительность такого материала легко объясняется представлениями о «мигающих вакансиях». Нейтроны (допустим, мы облучали именно ими) выбивают атомы из узлов, покинув узлы, атомы остаются в соответствующих «зонах неустойчивости» и, следовательно, почти мгновенно возвращаются в покинутые узлы, а «мигнувшие вакансии» столь же мгновенно исчезают. Именно в этом, видимо, секрет радиационной стойкости кристаллов типа In 2Те 3.

Еще один пример. Экспериментально установлено, что многие различные чужеродные (примесные) ионы в кристаллах In 2Те 3диффундируют так, что энергия активации процесса не зависит от сорта диффундирующего атома. Явление можно объяснить вот как. Примесный ион, оказавшись вблизи «мигнувшей вакансии», может вскочить в нее, опередив тот, которому ранее вакансия принадлежала. Те 10 -12с, которые необходимы атому для возврата из междоузлия в собственную вакансию, для мира атомов не такое уж малое время, и «расторопный» атом примеси, находясь поближе к вакансии, может успеть занять ее раньше. Эта агрессия, как и возврат собственно иона, происходит безактивационно, и, следовательно, энергия активации процесса диффузии любого примесного иона будет определяться лишь энергией, необходимой для «рождения» мигающей вакансии. А эта величина — характеристика кристалла и от сорта примеси не зависит.

Кстати, независимость энергии активации процесса диффузии примесного атома в кристалле In 2Те 3, когда диффузия обслуживается «мигающими вакансиями», ранее была предсказана теоретически и уж затем подтверждена экспериментально. Это обстоятельство придаёт убедительность и жизненную силу образу «мигающей вакансии». Диффузия — это первое явление, где «мигающие вакансии», придуманные для объяснения высокой радиационной стойкости «рыхлых» кристаллов, себя независимо проявили. Пусть это будет добрым началом!

И повышенная радиационная стойкость, и особенности процесса диффузии свидетельствуют в пользу представления о «мигающих вакансиях», конечно же, лишь косвенно. Хорошо бы с помощью каких-либо методов «увидеть», или «услышать», или как-нибудь по-иному зарегистрировать «мигающую вакансию». Будем надеяться, что это сделает кто-нибудь из будущих ученых, кто-нибудь из нынешних наших студентов. Ведь и обычные вакансии почти два десятка лет существовали в качестве гипотетического образа, и лишь с помощью ионного проектора в 40-х годах сфотографировали и увидели их скопления. Сегодня же есть право рассказывать о «мигающих вакансиях» как об очень интересной выдумке теоретика, которая, хочется верить, сохранится в теории реального кристалла.

Кстати, «мигающая вакансия» — это ли не признак жизни кристалла!

ЭЛЕКТРОНЫ — КВАНТОВЫЙ ГАЗ

В истории изучения кристаллов в начале нашего века был период, когда среди прочих проблема «электроны в металле» была весьма загадочной, интригующей, казалось — тупиковой. Посудите сами. Экспериментаторы, изучающие электрические свойства металлов, доказывают, что в металле имеются свободно движущиеся электроны. Вот два очень существенных факта, которые они установили. Первый факт: если быстро движущийся проводник, подключенный к амперметру, мгновенно остановить, по проводнику потечет ток и амперметр это обнаружит. Ясно, в чем дело: и остановленном проводнике электроны продолжают поступательно двигаться подобно тому, как движутся пассажиры, стоя едущие в трамвайном вагоне, который мгновенно затормозили. Движущиеся электроны и обусловят обнаруживаемый ток. Основываясь на описанной модели механизма возбуждения тока в заторможенном проводнике, можно вычислить величину тока. Вычислили! Результат расчета совпал с экспериментом! Убедились в том, что для носителей заряда характерно отношение величины заряда е к массе т такое же, как для свободного электрона. Кажется, убедительно! Второй факт: к проводнику подключают источник напряжения, и по проводнику течет ток. Всем это известно, и всем ясно, в чем дело: в металле имеются свободные электроны, которые под влиянием напряжения движутся. Имея в виду именно эту причину тока, его величину можно вычислить. Вычислили! Результаты расчета и эксперимента совпали отлично! Тоже убедительно!

Другие экспериментаторы, изучающие теплоемкость металлов, с другими фактами, утверждают, что в металлах вообще никаких свободных электронов нет. Они измерили теплоемкость металлического образца и в согласии с законом Дюлонга и Пти получили цифру, близкую к 6 кал/(моль•К). Но ведь это теплоемкость только решетки. А где же вклад свободных электронов? Ведь если бы они существовали и в совокупности образовывали «газ свободных электронов», то каждый из них имел бы кинетическую энергию 3/ 2 kT . Если же пренебречь потенциальной энергией их взаимодействия (а это можно, электроны свободны!) и если счесть, что на каждый ион в решетке приходится один электрон в газе свободных электронов, то тепловая энергия электронов в моле вещества будет 3/ 2 NkT , а следовательно, их теплоемкость должна была бы равняться 3/ 2 Nk = 3 кал/ (моль • К). Как доподлинно известно, 6 + 3 = 9, а экспериментатор обнаруживает лишь 6!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Живой кристалл»

Представляем Вашему вниманию похожие книги на «Живой кристалл» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Живой кристалл»

Обсуждение, отзывы о книге «Живой кристалл» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x