Обсудим характеристики газа вакансий в каком-нибудь определенном кристалле, например в золоте, имеющем следующие характеристики: решетка кубическая, расстояние между двумя позициями, где могут находиться атомы, а ≈ 3 • 10 -8см, температура плавления 1336 К. Период тепловых колебаний атома в узле решетки τ 0≈ 10 -13с. Допустим, что температура кристалла Т = 1330 К, т. е. на 6 К ниже точки плавления, и проследим при этой температуре судьбу вакансии. Ее состояние характеризуется следующими цифрами:

Природе почему-то понадобилось, чтобы вакансия отличалась беспримерной суетливостью!
Можно бы вычислить еще некоторые характеристики вакансий. Например, установить, что, пройдя по прямой в среднем 3 мкм, вакансия столкнется с себе подобной, что такие столкновения вакансия испытывает приблизительно сто раз в секунду, что две столкнувшиеся вакансии совершат совместно приблизительно десять периодов колебаний и лишь после этого порознь будут продолжать свой путь.
Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью ≈ 1 м/ч.
С понижением температуры коэффициент диффузии будет уменьшаться, а время «оседлой жизни» увеличиваться. И то, и другое будет происходить быстро — но экспоненциальному закону, и степень удивительности приведенных цифр будет уменьшаться. И все равно они — эти цифры — достаточное основание, чтобы слова «кристалл» и «мертвое тело» не употреблялись как синонимы.
Исповедующие традиционную убежденность в том, что популяризовать можно лишь прочно укрепившиеся в науке идеи и надежно установленные факты, сочтут этот очерк преждевременным, так как он посвящен идее, пребывающей в младенческом возрасте, еще не испытанной временем. Она не успела себя широко зарекомендовать, не оказала заметного влияния на развитие физики кристаллов. Получила косвенную апробацию лишь в нескольких экспериментах. И все же мне она представляется настолько жизнеспособной, что, не очень рискуя ошибиться, хочу предсказать ей успехи в будущем. А это мне, не придерживающемуся традиционного взгляда на область популяризации, кажется вполне достаточным основанием, чтобы о новорожденной идее рассказать в популярной книге.
Речь идет о «мигающей вакансии», образе, который родился в представлении физика, исследовавшего влияние электронного облучения на изменение некоторых физических свойств рыхлых кристаллов. «Рыхлых» — это значит таких, в решетке которых очень много незамещенных позиций. «Рыхлых» — это значит обладающих такой решеткой, при которой в структуре много пустоты в виде межузельных пространств.
Впрочем, пожалуй, о том, что было вначале, удобнее будет рассказать в конце очерка, а сейчас расскажу о том, что такое мигающая вакансия.
Обсуждая «пару Френкеля», мы обратили внимание на то, что пока атом, перешедший из узла в междоузлие, не ушел от этого узла на расстояние более атомного, он может с большей вероятностью возвратиться в покинутый им узел. «Родственная связь» между атомом и узлом окончательно не прервана, и дефект «по Френкелю» еще не возник. Мыслимы, однако, ситуации или, точнее говоря, мыслимы такие кристаллы, в которых родственная связь между узлом и атомом, покинувшим узел, сохраняется и тогда, когда атом ушел на значительное расстояние от узла. Сохранив родственную связь, он охотно в этот узел возвращается. Представим себе такую ситуацию. Допустим, что, покинув узел, атом превратился в ион с зарядом е + , а узел при этом оказался имеющим заряд е - . Допустим, что атом, покинув узел, ушел от него на расстояние r 0 . Покинул — это значит выпрыгнул вследствие тепловой флуктуации или оказался вышибленным какой-либо частицей, которая влетела в кристалл, имея большую энергию. Неважно, как покинул, а важно, что покинул! Оказавшись на расстоянии r 0 , ион испытывает кулоновское притяжение к оставленной им позиции с силой, определяемой законом Кулона: F 1 = е 2 /εr 0 2 ( ε— диэлектрическая проницаемость кристалла). Под влиянием этой силы ион мог бы возвратиться в покинутую им позицию, этому, однако, препятствует необходимость преодолеть энергетический барьер, который обусловлен наличием новых соседей данного иона в решетке. Если высота этого энергетического барьера ( U 0 , а расстояние между соседями в решетке a , то силу, удерживающую ион в его новом положении, легко вычислить, учтя, что произведение силы на путь равно выполненной работе (или затраченной энергии): F 2 а = U 0 , т. е. F 2 = U 0 /а. Если окажется, что сила F 2< F 1, то, невзирая на тормозящее влияние новых соседей, ион все-таки возвратится в покинутую им позицию. Сравнивая величины F 1 и F 2 , легко убедиться, что родственная связь между ионом и вакантной позицией не будет нарушена, если величина r 0 удовлетворяет условию
Читать дальше