Представьте себе, что вы находитесь на борту космического корабля, летящего равномерно и прямолинейно в мировом пространстве вдали от планет и других небесных тел. Вы не ощущаете ни действия каких-либо сил, ни самого движения. Вы пребываете в состоянии полной невесомости и свободно парите в кабине. Вообразить такую картину не составляет особого труда.
Теперь подвергнем этот сценарий калибровочному преобразованию. Иначе говоря, попытаемся изменить описание путем калибровочного преобразования, т.е. изменения масштаба, некоторой величины, в данном случае — расстояния. Предположим, что космический корабль по-прежнему движется в пространстве с постоянной скоростью, но уже по траектории, проходящей параллельно предыдущей на расстоянии 1 км от нее. Что означало бы такое калибровочное преобразование для пассажира космического корабля? Ровно ничего, если говорить о силах. Пассажир испытывал бы те же ощущения, что и в предыдущем сценарии. Точнее, поведение физических объектов вокруг пассажира абсолютно не зависит от того, по какой прямолинейной траектории движется корабль. Ясно, что в этом примере проявляется некая симметрия. Ее можно выразить утверждением, что законы физики инвариантны (т.е. неизменны) относительно параллельного переноса (или сдвига) при калибровке расстояния. Но пока силы по-настоящему не участвовали в нашем рассмотрении.
При калибровочном преобразовании траектория космического корабля оставалась прямолинейной. Пространственный сдвиг был одинаков у всех точек траектории. Иначе говоря, калибровочное преобразование было всюду одинаковым — подобное преобразование физики называют “глобальным” калибровочным преобразованием Глобальный характер важен: если бы калибровочное преобразование непрерывно изменялось вдоль траектории космического корабля, то преобразованная траектория представляла бы собой извилистую линию. У космического корабля, запрограммированного для полета по такой траектории, должны были бы непрерывно работать двигатели, а пассажира при каждом маневре бросало бы из стороны в сторону. Он испытывал бы действие сил. Маневрирование сказалось бы на поведении всех физических объектов внутри корабля. Калибровочные преобразования, изменяющиеся от точки к точке, известны под названием “локальных” калибровочных преобразований. Совершенно очевидно, что законы физики не инвариантны относительно локальных калибровочных преобразований, искривляющих траекторию космического корабля и причиняющих пассажиру столько неприятностей. А может быть, они все же инвариантны?
Для простоты предположим, что после калибровочного преобразования космический корабль запрограммирован для полета по круговой траектории с постоянной скоростью. Астронавт ощущает кривизну траектории, так как уже не находится в состоянии невесомости. Теперь он не будет свободно парить — центробежная сила прижимает его к стенкам корабля. Физические явления на борту космического корабля, движущегося по круговой орбите, существенно отличаются от того, что происходит на борту корабля, движущегося равномерно и прямолинейно.
Представьте себе, что вы и есть тот астронавт, который описывает на борту корабля круг за кругом в космическом пространстве. Вы засыпаете и, проснувшись, обнаруживаете, что снова находитесь в невесомости. “Должно быть, — подумаете вы, — космический корабль снова летит равномерно и прямолинейно”. Но выглянув в иллюминатор, вы к своему удивлению увидите вокруг себя звезды. Каким образом, двигаясь по окружности, можно оставаться в состоянии невесомости? Посмотрев в иллюминатор на противоположной стене, вы поймете причину: корабль движется по круговой орбите вокруг планеты.
Одна из наиболее занимательных картин в реальном космическом полете — свободное парение астронавта в состоянии почти полной невесомости при движении космического корабля" по орбите вокруг Земли. То, что испытывает при этом реальный астронавт, не отличимом от ощущений астронавта, движущегося в межзвездном пространстве равномерно и прямолинейно. В этом заключен глубокий физический принцип: явления, сопровождающие полет по криволинейной траектории вокруг планеты, ничем не отличаются от происходящих при равномерном и прямолинейном движении в глубоком космосе. Причина такого совпадения ясна: гравитация (тяготение) планеты в точности компенсирует эффекты, вызванные кривизной траектории космического' корабля. Физики говорят в этом случае, что гравитация создает компенсирующее поле; она строго компенсирует отклонение системы от прямолинейного движения. Разумеется, мы выбрали простой пример кругового движения. В случае полета космического корабля по извилистой линии для компенсации понадобилось бы гораздо более сложное гравитационное поле. Но коль скоро траектория космического корабля задана, можно рассчитать и гравитационное поле, способное восстановить комфорт и невесомость пассажиров. В принципе гравитацию всегда можно использовать для устранения сильной тряски на неустойчивой траектории.
Читать дальше