Из всего сказанного следует весьма важный вывод. Законы физики можно сделать инвариантными даже относительно локальных калибровочных преобразований, если ввести гравитационное поле для компенсации изменений от точки к точке. Физики предпочитают пользоваться обратным утверждением, а именно: гравитационное поле поддерживает в природе локальную калибровочную симметрию, возможность свободно изменять масштаб от точки к точке пространства. В отсутствие гравитации возможна только глобальная симметрия; не нарушая законов физики, можно только переходить от одной прямолинейной траектории к другой. При наличии гравитации возможно преобразование к траекториям любой формы без нарушения законов физики. Напомним, что под симметрией мы понимаем инвариантность относительно некой операции. Симметрия, о которой только что говорилось, — это инвариантность законов физики относительно любых изменений формы траектории движения. С этой точки зрения гравитационное взаимодействие представляет собой проявление абстрактной симметрии, локальной калибровочной симметрии, лежащей в основе законов реального мира. Словно Творец сказал сам себе: “Мне так нравятся красота и симметрия! Прекрасно, если. повсюду воцарится калибровочная симметрия. Да будет так! Но что я вижу? Попутно возникло и новое поле. Назовем его гравитацией”.
Значение концепции калибровочной симметрии заключается в том, что благодаря ей создается не только гравитационное, а и все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля. В квантовом описании калибровочные поля связаны с частицами вещества и концепцию калибровочного преобразования следует расширить, связав с фазой квантовой волны, описывающей частицу. Входить в технические детали этой процедуры вряд ли стоит. Существенно другое: в природе существует целый ряд локальных калибровочных симметрий и необходимо соответствующее число полей для компенсации этих калибровочных преобразовании. Силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. С этой точки зрения, например, электромагнитное поле не просто определенный тип силового поля, существующего в природе, а проявление простейшей из известных калибровочных симметрий, совместимой с принципами специальной теории относительности. Калибровочные преобразования в этом случае соответствуют изменениям потенциала от точки к точке.
Интересно отметить, что физик-теоретик, ничего не знающий об электромагнетизме, но убежденный, что природа зиждется на симметрии, мог бы сделать вывод о существовании электромагнитных явлений, основываясь лишь на требовании простейшей локальной калибровочной симметрии и так называемой симметрии Лоренца—Пуанкаре специальной теории относительности, о которой мы упоминали в гл. 4. Используя математику и основываясь только на существовании этих двух симметрий, теоретик смог бы построить уравнения Максвелла, не проведя ни единого эксперимента по электричеству и магнетизму и даже не подозревая об их существовании. При этом он, возможно, рассуждал бы так1 коль скоро упомянутые симметрии — простейшие и наиболее утонченные, вряд ли природа не воспользовалась бы ими. Исходя из подобных чисто умозрительных соображений, теоретик пришел бы к выводу о существовании в реальном мире электромагнитных явлений. Он мог бы пойти и дальше: вывести все законы электромагнетизма, доказать существование радиоволн, возможность создания динамо-машины и т.д., т.е. совершить все те открытия, которые в действительности были сделаны на основе реальных экспериментов. Могущество математического анализа, используемого для описания явлений природы, столь велико, что позволяет предвидеть такие особенности, о существовании которых мы и не помышляли.
Калибровочная симметрия — гораздо более важное понятие, чем просто изящный математический прием. В ней скрыт ключ к построению квантовых теорий взаимодействий, свободных от разрушительного действия бесконечных членов уравнений, о чем шла речь в предыдущем разделе. Калибровочная симметрия, как оказалось, тесно связана с перенормируемостью. Чудо КЭД основано на глубокой и простой симметрии, присущей электромагнитному полю. Это наводит на мысль о том, что трудности квантового описания трех других взаимодействий, по-видимому, связаны с тем, что нам не удалось обнаружить полный набор скрытых в них симметрий. Например, если бы теорию слабого взаимодействия можно было сформулировать на языке калибровочных полей, то это способствовало бы успешному построению квантового описания этого взаимодействия.
Читать дальше