Марио Бертолотти - История лазера

Здесь есть возможность читать онлайн «Марио Бертолотти - История лазера» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Долгопрудный, Год выпуска: 2011, ISBN: 2011, Издательство: Издательский Дом «Интеллект», Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

История лазера: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «История лазера»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга, которую Вы взяли в руки — редкий сплав добротного изложения основ современной физики и ее истории. История науки предстает здесь в неразрывной связи драмы идей в познании природы и судеб конкретных людей. Все эти выдающиеся исследователи были захвачены в круговорот жестокой истории XX века, которой в книге уделено немало страниц.
Автору удалось совместить рассказы о жизненном пути замечательных личностей с пристальным, шаг за шагом, анализом гипотез, теории и эксперимента.
Для широкого круга читателей, интересующихся современной физикой.

История лазера — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «История лазера», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис31 Атом с моментом l 12 в соответствующих ед может ориентировать - фото 34

Рис.31. Атом с моментом l = 1/2 (в соответствующих ед.) может ориентировать свой момент лишь двумя способами, что показано указкой в руке человека

Чтобы проверить то, что атомы могут ориентироваться только дискретным образом, Отто Штерн задумал эксперимент, основанный на отклонении молекулярного пучка в неоднородном магнитном поле. Мы уже говорили, что атом со своим магнитным моментом подобен маленькому магниту. Если мы заставим его двигаться в области однородного магнитного поля, то магнитная сила будет действовать на его северный полюс с такой же силой, как и на южный полюс, но в противоположном направлении. Таким образом, его магнитный момент ориентируется в направлении внешнего поля (прецессионное движение, описанное выше), но никакие силы не отклоняют его движение.

Рис 32 а Схема эксперимента Штерна и Герлаха Молекулярный пучок из печки O - фото 35

Рис. 32. (а) Схема эксперимента Штерна и Герлаха. Молекулярный пучок из печки O проходит между полюсами магнита MM' (один из которых в форме ножа) и попадает на экран S. (б) Магнитное расщепление пучка атомов лития

Если поле неоднородно, то сила, действующая на северный полюс» уже не равна силе, действующей на южный полюс. Получается результирующая сила, действующая на магнит как целое. Она отклоняет атом от его первоначальной траектории. Величина отклонения определяется степенью неоднородности поля, Разумеется, чтобы получить заметное отклонение неоднородность поля должна быть такова, чтобы изменения поля могли бы проявиться на малой длине элементарного магнита (в нашем случае это линейные размеры атома около одной сотой миллионной части сантиметра). Штерн добился этого специальной конструкцией полюсов магнита. Один полюс был в форме ножа, а другой был плоским (рис. 32, а). При такой конфигурации магнитное поле вблизи острия значительно сильнее, чем на удалении от него. Тонкий пучок атомов получался испарением в печи вещества, содержащего нужные атомы, и пропусканием паров через два круглых отверстия, которые формировали пучок, проходящий между полюсами магнита. Каждый индивидуальный атом отклоняется в неоднородном поле в согласии с величиной и направлением его магнитного момента. Следы индивидуальных атомов можно сделать видимыми на подходящем экране. Эксперимент был очень трудным, так как вся система должна работать при очень высоком вакууме, чтобы избежать случайных отклонений из-за столкновений атомов между собой. В то время соответствующие вакуумные насосы были сложны и часто выходили из строя. Потребовалось почти два года между 1921 г. и 1922 г., чтобы выполнить весь эксперимент.

Согласно классической теории, атомы должны отклоняться во всех возможных направлениях, поскольку их моменты могут иметь любую ориентацию по отношению к полю. Поэтому на экране должно было бы наблюдаться большое пятно от падающего на него пучка. Квантовая теория, напротив, предсказывает, что направления квантованы и возможны только ориентации с дискретным номером ориентации. Поэтому след на экране расщепляется на конечное число дискретных пучков. Эксперимент, сделанный с атомами серебра, показали, что первая картина исключается. Штерн описал это в интервью:

«После окончания эксперимента и напуска воздуха Герлах вынул детекторный фланец. Но он не увидел никаких следов атомов серебра на стеклянной пластинке и протянул фланец мне. С Герлахом, смотрящим через мое плечо в то время, когда я старался вблизи разглядеть пластинку, мы были удивлены, увидев как постепенно появляются следы пучка... Наконец, мы поняли, в чем дело. Мое жалование доцента было слишком мало, чтобы позволить себе курить хорошие сигары, так что я курил дешевые. В них было много серы и мое дыхание с дымом превратило серебро в сульфат серебра черного цвета. Благодаря этому его можно видеть. Это было похоже на проявление фотографической пластинки».

И, наконец, пластинка показала, что пучок расщепляется на два разделенных пучка!

Но результат был не вполне ясен, и эксперименты продолжались, несмотря на большие финансовые трудности, которые в то время испытывала Германия.

Борн начал выступать с серией публичных лекций по теории относительности с целью заработать деньги для продолжения эксперимента.

Позднее Штерн стал профессором в Ростоке, и Герлах остался один. Он повторял эксперимент и вместо круглых диафрагм стал использовать прямоугольные диафрагмы для формирования пучка. Это позволило увеличить число атомов в пучке и получать более ясные изображения. На рис. 32, б показан результат эксперимента с использованием атомов лития. Результат весьма ясен. Вместо одного широкого пятна получаются два хорошо разделенных пятна. Это не только демонстрирует, что атомы имеют магнитный момент, который соответствует угловому моменту с проекциями +1/2 и —1/2, но и позволяет измерить их значения в абсолютных единицах. Разумеется, интерпретация, которую Штерн дал в то время, была не вполне корректна, поскольку во внимание не принимался спин электрона (мы будем говорить об этом ниже), который должен добавляться к моменту электрона на орбите по правилам квантовой механики. Однако основные принципы квантования направления намагничивания остаются в силе во всяком случае. Многие проблемы, которые возникли в результате этого эксперимента, были решены, когда был открыт спин электрона. За свои эксперименты Штерн получил Нобелевскую премию по физике в 1943 г. Позднее Штерн переехал в США и в 1945 г. ушел в отставку и поселился в Беркли (Калифорния).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «История лазера»

Представляем Вашему вниманию похожие книги на «История лазера» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «История лазера»

Обсуждение, отзывы о книге «История лазера» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x