Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения

Здесь есть возможность читать онлайн «Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мечта Эйнштейна. В поисках единой теории строения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мечта Эйнштейна. В поисках единой теории строения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Barry Parker.
.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.

Мечта Эйнштейна. В поисках единой теории строения — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мечта Эйнштейна. В поисках единой теории строения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Поначалу мало кто обратил внимание на идею Юкавы, но в 1936 году (через год после того, как он её выдвинул) было сделано открытие, которое заставило вспомнить о предсказании японского физика. Карл Андерсон, проводивший с помощью камеры Вильсона измерения космических лучей на горе Пайк в Колорадо, обнаружил след с неожиданной траекторией. Радиус кривизны соответствовал частице с массой, примерно в 200 раз большей массы электрона, и все вдруг заинтересовались идеей Юкавы. Неужели удалось обнаружить предсказанную им частицу? Однако при детальном изучении новой частицы оказалось, что, ко всеобщему разочарованию, она не взаимодействует с ядром. Частица Юкавы, переносящая взаимодействие между протонами и нейтронами, должна была бы сильно взаимодействовать с ядром. Обнаруженную частицу назвали мю-мезоном, или кратко, мюоном.

Физики оказались в затруднении: если мюон – это не та частица, которую предсказал Юкава, то что она такое? Зачем она нужна? И как быть с частицей Юкавы? Существует ли она? Прошло ещё десять лет, прежде чем учёные убедились в её реальности. В 1947 году бристольский физик Пауэлл обнаружил среди космических лучей другой мезон, который сильно взаимодействовал с ядром. Эту частицу назвали пи-мезоном, или кратко пионом. Теперь известны три пиона: заряженные (? +, ? -) и нейтральный (? 0).

Вскоре стало ясно, что идея Юкавы вполне разумна и что сильное взаимодействие действительно есть результат обмена мезонами. На фейнмановской диаграмме это выглядит так:

Точно так же как электрон испускает фотоны и затем поглощает их протон и - фото 53

Точно так же, как электрон испускает фотоны и затем поглощает их, протон (и нейтрон) излучает и поглощает пионы. Иными словами, протон и нейтрон должны быть окружены облаком виртуальных пионов. Сильное взаимодействие между двумя протонами можно представить себе в виде обмена пионами. Однако при этом имеется существенное отличие от электромагнитных взаимодействий – пион «действует» лишь на расстоянии примерно 10 -13см, т.е. облако очень плотно окутывает частицу. Для того чтобы два протона (или два нейтрона, или нейтрон и 188 протон) могли провзаимодействовать, они должны сблизиться на расстояние 10 -13см.

Испускание и последующее поглощение мезона протоном Окружающее протон - фото 54

Испускание и

последующее поглощение

мезона протоном

Окружающее протон облако устроено довольно сложно: оно состоит как из фотонов, так и из пионов. Можно считать, что два протона обмениваются фотонами, находясь на относительно большом расстоянии (когда действует электромагнитная сила), а когда подходят очень близко друг к другу, происходит обмен мезонами, ответственными за сильное взаимодействие.

Юкава, кроме того, предсказал, что слабое взаимодействие также является результатом некоего типа обмена. Первая заметная работа, развивающая эту тему, была написана в 1939 году О. Клейном. Он назвал новую обменную частицу W , и так её называют до сих пор. Через 20 лет его идеи далее развил Джулиус Швингер.

Однако упомянутые выше теории сталкиваются с определёнными трудностями – они не подвергаются перенормировке. Кроме того, константа связи для сильных взаимодействий равна примерно 1, а не 1/137, как в квантовой электродинамике. Это означает, что члены второго и третьего порядков имеют ту же величину, что и члены первого порядка, и перенормировка тут не помогла бы. Константа связи для слабых взаимодействий гораздо меньше, но в соответствующей теории есть другие трудности.

Калибровочная теория

Одно из основных достижений того времени, когда создавались эти теории, состояло в том, что учёные поняли, какую важную роль играет в природе симметрия. Симметрия существует, например, между электроном и позитроном – за исключением заряда, они совершенно одинаковы. Примерная симметрия есть также между нейтроном и протоном – они одинаковы, за исключением того, что протон имеет положительный заряд (немного различаются и их массы).

Учёные также обнаружили, что симметрия связана с понятием инвариантности. Легко понять, что это значит, если посмотреть на рисунок, приведённый ниже. Предположим, что мы поворачиваем квадрат на 90°, при этом он остаётся таким же (как говорят, инвариантен относительно поворота). По отношению к равностороннему треугольнику инвариантным преобразованием является поворот на 120°. Окружность, как легко видеть, остаётся неизменной при повороте на любой угол, т.е. она имеет непрерывную симметрию.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мечта Эйнштейна. В поисках единой теории строения»

Представляем Вашему вниманию похожие книги на «Мечта Эйнштейна. В поисках единой теории строения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Образцов - Единая теория всего
Константин Образцов
Отзывы о книге «Мечта Эйнштейна. В поисках единой теории строения»

Обсуждение, отзывы о книге «Мечта Эйнштейна. В поисках единой теории строения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x