Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения

Здесь есть возможность читать онлайн «Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мечта Эйнштейна. В поисках единой теории строения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мечта Эйнштейна. В поисках единой теории строения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Barry Parker.
.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.

Мечта Эйнштейна. В поисках единой теории строения — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мечта Эйнштейна. В поисках единой теории строения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Бесконечности

Несмотря на успех теории Дирака, многих учёных по-прежнему беспокоит бесконечное «море» электронов с отрицательной энергией. Дирак же считал это совершенно естественным и не видел причин для беспокойства. Нужно подчеркнуть, что подход Дирака – это лишь одна из возможных интерпретаций наблюдений. В лаборатории никогда не фиксируется отсутствие электрона с отрицательной энергией; всё, что мы видим, – это позитрон.

Фейнмановская диаграмма взаимодействия двух электронов Между ними происходит - фото 44

Фейнмановская диаграмма взаимодействия двух электронов. Между ними происходит обмен фотоном

Позже появились другие бесконечности, по сравнению с которыми «море» электронов с отрицательной энергией – сущие пустяки. Чтобы показать, откуда берутся бесконечности, посмотрим, как работает теория поля (здесь мы ограничимся только квантовой электродинамикой, теорией электромагнитного поля). Она основана на так называемой теории возмущений. В теории возмущений рассматриваются взаимодействия разных порядков – первого, второго и т.д. Наибольший вклад вносят вычисления взаимодействий первого порядка, затем учитывается вклад второго и последующего порядков; по крайней мере, так предполагалось. Но когда были проделаны первые вычисления, оказалось, что их результаты хорошо совпадают с экспериментом, и нет нужды использовать более высокие порядки, так как это усложняет расчёты. Тем не менее Оппенгеймер и Уоллер однажды провели вычисления в более высоких порядках и обнаружили нечто странное. В итоге, вместо небольшой поправки к результату вычислений в первом порядке они получили бесконечность. Уоллер рассказал об этом одному из ведущих физиков того времени – Паули, но тот не поверил услышанному. Он считал, что такого просто не может быть и где-то допущена ошибка.

Попробуем разобраться, чем объяснялась такая уверенность Паули. Рассмотрим, например, соударение двух электронов; его можно изобразить так, как показано выше. Точка, в которой происходит обмен фотонами, называется вершиной. Каждой такой точке соответствует так называемая константа связи. В случае вычислений первого порядка в квантовой электродинамике константа связи равна 1/137, в вычислениях второго порядка она имеет то же значение, и результат поэтому должен был бы быть в 1/137 раз меньше, чем для первого порядка. Однако Оппенгеймер и Уоллер показали, что это не так – они получили бесконечность. Вскоре оказалось, что трудности, по-видимому, были связаны с массой и зарядом частицы, а также с вакуумом.

Поначалу учёные хотели пренебречь этой трудностью, поскольку вычисления первого порядка прекрасно согласовывались с экспериментом, и выполнять расчёты более высоких порядков казалось лишним, тем более, что они были за пределами возможности экспериментальной проверки. Но затем был обнаружен сдвиг Лэмба. Атом водорода тщательно изучали много лет, и было установлено, что уравнение Шрёдингера позволяет правильно рассчитать расположение спектральных линий. Однако из теории Дирака следовало, что у спектральных линий должна быть ещё и сверхтонкая структура. Хотя обнаружить расщепление линий было очень непросто, это удалось в 1947 году Т. С. Лэмбу с сотрудниками; их открытие сейчас носит название эффекта Лэмба.

Для проведения подробных расчётов требовалось учесть эффекты второго порядка и применить теорию возмущений соответствующего порядка, т.е. нужно было как-то избавиться от появляющихся в этом случае бесконечностей. Сотрудник Лейденского университета Г. А. Крамерс предложил проводить расчёты так, чтобы бесконечности взаимно уничтожались. Правда, оставалось непонятным, как это сделать. Первую такую попытку предприняли Лэмб и Н. Кролл, но их метод был ненадёжен и неточен, хотя и неплох.

Перенормировка

Итак, возникла необходимость в хорошем, надёжном методе «избавления» от бесконечностей, и его независимо и почти одновременно разработали трое учёных – Юлиан Швингер, Ричард Фейнман и Шиньиширо Томонага. Первые два родились в Нью-Йорке, а третий – в Японии. Швингер был вундеркиндом, в колледж поступил в 14 лет, первую работу по физике опубликовал в 16, а докторскую диссертацию защитил в 21 год, что необычно даже для вундеркинда. Некоторое время он работал вместе с Оппенгеймером в Калифорнийском университете, но потом переехал в Гарвард, где стал профессором, когда ему не исполнилось ещё и тридцати. Швингер был нелюдим и предпочитал работать в одиночку. Во время второй мировой войны он любил приходить в лаборатории Массачусетского технологического института по ночам, когда там никого не было. Говорят, что иногда сотрудники института записывали на доске условия задач, которые не могли решить, и к своей радости утром обнаруживали приписанное Швингером решение. Но, к сожалению, предложенный им метод «сокращения» бесконечностей весьма сложен, поэтому мы рассмотрим метод Фейнмана.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мечта Эйнштейна. В поисках единой теории строения»

Представляем Вашему вниманию похожие книги на «Мечта Эйнштейна. В поисках единой теории строения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Константин Образцов - Единая теория всего
Константин Образцов
Отзывы о книге «Мечта Эйнштейна. В поисках единой теории строения»

Обсуждение, отзывы о книге «Мечта Эйнштейна. В поисках единой теории строения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x