Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии

Здесь есть возможность читать онлайн «Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2001, ISBN: 2001, Издательство: ФИЗМАТЛИТ, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных «изобретений». Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.
Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 36 Примеры взаимных переходов упорядоченных и неупорядоченных состояний - фото 53
Рис. 3.6. Примеры взаимных переходов упорядоченных и неупорядоченных состояний: а — разность давлений (р 2> p 1); б — разность температур (Т 2< T 1); в — разность концентраций (с 2> c 1)

2. В одной половине сосуда собрались те молекулы, у которых средняя скорость теплового движения больше, а в другой — те, у которых она меньше некоторого заданного значения. (Известно, что в газе имеются молекулы с разными скоростями; его температура определяется их средним значением.) Тогда газ в одной половине сосуда будет горячим (с температурой T 1), а в другой — холодным (с температурой T 2< Т 1). Такая ситуация изображена на рис. 3.6, б; в принципе она аналогична случаю с чайником, показанному на рис. 3.5.

3. В сосуде, где находится смесь двух газов (например, воздух, состоящий из кислорода и азота), молекулы одного газа (кислорода) соберутся преимущественно в одной части сосуда, а второго газа (азота) — в другой: В сосуде возникнет разность концентраций c 1и c 2, (рис. 3.6, в).

И теория, и опыт показывают, что такая ситуация — самопроизвольное упорядочение — возникновение разностей давлений р, температур Т или концентраций с столь маловероятна, что ее возникновение было бы чудом. Напротив, если такую разность создать искусственно, путем внешнего воздействия (с затратой соответствующей работы), она тут же начнет самопроизвольно выравниваться.

Действительно, если разделить сосуд перегородкой и заполнить его отсеки кислородом и азотом, то при удалении перегородки газы равномерно перемешаются. То же будет при разных давлениях или температурах — они выравняются, и в конце концов установится некоторое среднее значение.

Теперь мы можем вернуться к свойствам энтропии — статистической трактовке. В результате работ Л. Больцмана и затем М. Планка была установлена известная зависимость

S = klnw. (3.8)

Энтропия пропорциональна логарифму термодинамической вероятности (т. е. числу w микросостояний, которыми данное макросостояние может быть реализовано). Коэффициент k — постоянная Больцмана — имеет определенный физический смысл: он равен отношению универсальной газовой постоянной Rμ к числу Авогадро N A.

Применительно к примерам, рассмотренным выше, формула (3.8) показывает, что чем больше число w (например, все монеты лежат в беспорядке или газ равномерно распределен в сосуде и т. д.), т. е. чем больше вероятность данного состояния, тем больше и энтропия S. Если, напротив, w → 1, т. е. все единственным образом упорядочено (например, все монеты лежат одинаково), то S = 0 (поскольку ln 1 = 0).

Таким образом, поскольку все физические системы самопроизвольно стремятся к состоянию большей вероятности, к равновесию, то энтропия любой изолированной системы, свободно меняющей свое состояние, может только увеличиваться. Если система уже находится в равновесии или обратимо изменяет состояние, то энтропия будет постоянной. Самопроизвольно она уменьшаться не может.

Все три процесса, показанные на рис. 3.6, могут идти только влево (рост энтропии S). Вправо (штриховая стрелка) они идти не могут, так как энтропия при этом уменьшилась бы, что невозможно.

Таким образом, и статистическая трактовка энтропии приводит тоже к положениям второго закона термодинамики: в изолированных системах энтропия может либо оставаться неизменной (в идеальных, обратимых процессах, где уровень неорганизованности остается неизменным), либо возрастать (в реальных процессах, где неупорядоченность, неорганизованность возрастают).

В формулировке М. Планка эта мысль выражена предельно четко: «В природе для каждой системы тел существует величина, которая при всех изменениях, которые затрагивают только эту систему, или остается постоянной (обратимые процессы), или увеличивается (необратимые процессы). Это энтропия системы».

Эта формулировка второго закона термодинамики очень близка по стилю и четкости к формулировке первого закона, которую дал Фейнман (мы ее приводили на с. 86) и смысл которой аналогичен утверждению: «Существует величина, которая при всех изменениях, которые затрагивают только эту систему, остается постоянной. Это энергия системы».

Соответственно существование ppm-1 противоречит постоянству энергии, существование ppm-2 точно так же противоречит постоянству или возрастанию энтропии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии»

Представляем Вашему вниманию похожие книги на «Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Алексей Смирнов
libcat.ru: книга без обложки
Владимир Осинский
Майя Колмакова - Вечный двигатель науки
Майя Колмакова
Олег Мальцев - Вечный двигатель
Олег Мальцев
Святослав Олейников - Вечный двигатель лета
Святослав Олейников
Виктор Брусницин - Вечный двигатель
Виктор Брусницин
Отзывы о книге «Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии»

Обсуждение, отзывы о книге «Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x