Инженеры торопят физиков, и те охотно идут им навстречу. Еще совсем недавно ускорители были привилегией физиков-экспериментаторов, а теперь ряд промышленных ускорителей (естественно, малогабаритных) справил новоселье на многих крупных машиностроительных предприятиях. К примеру, на Ижорском заводе в Ленинграде линейный ускоритель электронов выступает в роли дефектоскопа, контролирующего качество оборудования для будущих атомных электростанций. Новой, «ядерной» техникой интересуются также судостроители, гидроэнергетики и другие специалисты.
История появления у нас в стране промышленных ускорителей такова. Дело начал академик Г. Будкер (1918–1977). В 1958 году он организовал в Сибирском отделении АН СССР Институт ядерной физики (ИЯФ).
И тут же стал упорно искать немедленных приложений, использования всею того, что знал и умел молодой институт, к сегодняшним насущным проблемам народного хозяйства. Так и возникли установки по виду довольно скромные (электронные ускорители с мощностью от нескольких киловатт до мегаватта и энергией электронов от сотен киловольт до нескольким МэВ), не поражающие воображение ни своими размерами, ни энергией частиц.
Что дают эти устройства?
Различные виды излучений. И спрос на эту необычную продукцию во всех промышленно развитых странах очень велик и растет — на 15 процентов в год! А общая мощность излучения, потребляемого сегодня в мире в технологических целях, уже превышает десятки МВт.
Так подтверждается тезис К. Маркса о том, что «всякое открытие становится основой нового изобретения или нового усовершенствования методов производства».
Стоит сразу же подчеркнуть, что физики (головным в этих вопросах является ИЯФ, его директор академик А. Скринский, ученик и сподвижник Г. Будкера, большой энтузиаст промышленных ускорителей) не разрабатывают те или иные конкретные технологические процессы. Они дают мощные и удобные источники излучений. А как их использовать конкретно — забота прикладников, у которых с физиками давно сложились плодотворные связи. Из Москвы, Минска, Одессы и многих других городов Союза едут в Новосибирск люди, чтобы получить консультацию или наладить полезный контакт.
Профессии промышленных ускорителей разнообразны.
Одно из главных достоинств радиационной технологии в том, что она позволяет придавать традиционным материалам качественно новые свойства. Так, в потоке разогнанных электронов резина претерпевает удивительные метаморфозы: становится гораздо прочней. Ускорители помогают улучшать свойства древесины, всевозможных пластмасс, оболочек электрических кабелей, проводов (в электротехнической промышленности на базе сибирских разработок уже создано 14 технологических линий, а экономический эффект от радиационной обработки кабельных изделий превысил 100 миллионов рублей).
Ускорители позволили разработать новую технологию производства цемента. Поток ускоренных электронов как бы подстегивает физико-химические реакции во всем объеме облучаемого материала. И на образование цементного клинкера теперь уходит всего 10 секунд. Процесс идет в сотни раз быстрее! А главное — отпадает нужда в громадных вращающихся печах, должны исчезнуть и вредные выбросы в атмосферу.
Промышленные ускорители можно с успехом использовать для сварки, резки и плавки. С их помощью можно обеззараживать сточные воды крупных животноводческих комплексов. Обрабатывать клубни картофеля, чтобы замедлить прорастание при его длительном хранении. Радиация может уничтожать амбарных вредителей, зарящихся на запасы пищевого зерна.
Долго пришлось бы перечислять все те области, где радиация уже работает или намеревается поработать.
А на подходе уже новое поколение промышленных ускорителей, поколение, предлагающее еще более эффективное средство — синхротронное излучение электронных накопителей. Тут будет генерироваться на много порядков более мощное ультрафиолетовое и рентгеновское излучение. Вот как характеризует его А. Скринский:
«С помощью синхротронного излучения биологам впервые удалось увидеть, как изменяется структура живой мышцы в процессе сокращения. Химикам оно помогает исследовать механизм каталитических реакций. Физики уже убедились, что смогут теперь детально изучить причины структурных искажений в металле, процессы горения и динамику превращений в полимерах. В электронной промышленности это излучение позволяет перейти к производству интегральных микросхем с субмикронными размерами рабочих элементов. Отсюда — возможность разместить на том же участке кристалла в сотни раз больше элементов, соответственно выиграв в производительности и эффективности электронных устройств…»
Читать дальше