Для ловли кварков камера Вильсона так же мало подходит, как рогатина или духовое ружье плохо вяжутся с современной охотой, где в ход пошли даже вертолеты!
Счетчик Гейгера вышел из моды (правда, его еще используют, например, в биологии, где требования не столь высоки, как при ловле микрочастиц), потому что уж очень он «неповоротлив»: регистрация сверхбыстрых сигналов ему явно не под силу.
А «неповоротливость» камеры Вильсона проявляется в другом. Что можно довольно просто объяснить.
Камеру наполняет газ (пары). Он очень разрежен в сравнении с жидкостями. Поэтому и следы получаются жидковаты, чересчур тонкими. А кварки (пора вспомнить о них) и сами не очень-то следоспособны. Так что ловить кварки в камере Вильсона — это то же, что при охоте на слонов пользоваться… мышеловками.
Для ловли кварков и других необычных частиц требуются средства более надежные. И физика дала их.
В 20-е и 30-е годы камера Вильсона все еще была чудом науки. Но требования к измерениям возрастали. Ученые имели дело со все более быстрыми и, главное, короткоживущими частицами. И хотя целое поколение физиков билось над усовершенствованием детища Вильсона, преуспели тут мало.
Революцию в этом деле совершила изобретенная в 1952 году пузырьковая камера. Она справедливо стала сенсацией 60-х годов. С ее помощью был открыт и знаменитый омега-минус-гиперон, упрочивший славу М. Гелл-Мана и торжество кварковой гипотезы.
В двух словах пузырьковую камеру можно представить как камеру Вильсона «наоборот». Вместо капелек жидкости в пересыщенном паре теперь исследователи имеют дело с пузырьками пара в перегретой жидкости.
Жидкость мгновенно вскипает вдоль трека ионизирующей частицы и отмечает его гирляндой мелких пузырьков газа.
Когда пузырьки в камере достигают значительных размеров, камера освещается и следы (они имеют микронные толщины) фотографируются (стереофотосъемка с помощью 2–4 объективов). После фотографирования давление в камере поднимается до прежней величины, пузырьки при этом исчезают, и камера вновь оказывается готовой к действию. Весь цикл работы пузырьковой камеры составляет величину порядка 1 секунды.
Эволюция пузырьковой камеры — от рождения до наших дней — весьма примечательна и характерна. Методические усовершенствования шли гигантскими темпами: началось все с «сургуча и бечевки» (обычное выражение физиков, когда они хотят подчеркнуть, что в прошлом выводили законы с помощью самых простых средств), а закончилось дело тоннами и тоннами материала.
Примером современной установки может служить созданная во Франции для совместной работы с советскими физиками водородная камера «Мирабель», установленная на ускорителе Института высоких энергий АН СССР под Серпуховом. Ее объем 10 кубических метров, общий вес движущихся частей достигает 2 тонн, а стоит она миллионы. Создание подобных устройств — уже дело государственного и даже межгосударственного масштаба.
К чему такие гиганты? Они себя оправдывают, это легко доказать. Заполняющий камеру «Мирабели» жидкий водород представляет собой хорошую (простую и однородную) мишень для частиц, врывающихся в камеру из космоса или из «жерла» ускорителя. Тут пузырьковая камера решительно одерживает верх над ядерными фотоэмульсиями — этим винегретом из водорода, углерода, азота, кислорода, брома и серебра. (Работающие с ядерными эмульсиями физики всегда спорят о том, в какое именно ядро попала частица с высокой энергией.)
Достоинство большого объема камеры в том, что теперь можно следить за ядерными событиями — за последовательными этапами распада частиц — на протяжении многих метров, а также регистрировать очень редкие процессы (рождение кварков?), представляющие для науки огромный интерес.
Но гигантизм выставляет и свою оборотную, негативную сторону: обработать информацию, даваемую пузырьковой камерой, нелегко.
Дело прежде шло так. Сначала лаборанты просматривали все полученные фотографии и отбирали те из них, где достаточно много «вилок». Отобранные снимки поступали затем на измерительные микроскопы. Все увиденное приборами автоматически засылалось в память ЭВМ.
Но на изучение каждой фотографии даже современная электронно-вычислительная машина тратит немало времени. Вот и получается, что с помощью даже пузырьковых камер практически невозможно исследовать очень редкие события, которые случаются, скажем, раз за сто тысяч взаимодействий, вылетающих, к примеру, из ускорителя частиц с веществом камеры. И сейчас физики хотят совсем исключить человека из системы обработки поступающей из камеры информации. Автоматизировать все.
Читать дальше