Владимир Ленин. Материализм и эмпириокритицизм // Карл Маркс, Фридрих Энгельс и Владимир Ленин. О диалектическом материализме. — М.: Прогресс, 1977. — С. 305–306.
Владимир Ленин. Материализм и эмпириокритицизм // Карл Маркс, Фридрих Энгельс и Владимир Ленин. О диалектическом материализме. — М.: Прогресс, 1977.
Процитировано в: Рукер «Четвертое измерение», с. 64.
Представим себе, что некий флатландец построил конструкцию из шести смежных квадратов, образующих подобие креста. С точки зрения флатландца, квадраты жестко соединены между собой. Из нельзя повернуть или иначе переместить относительно соединенных сторон. А теперь представим, что мы взяли эту конструкцию и решили отогнуть некоторые квадраты, чтобы образовался куб. Стыки между квадратами, жесткие в двумерном пространстве, в мире трех измерений легко поддаются, превращаясь в сгибы. Сложить куб настолько просто, что флатландец даже не заметит этого.
Но если флатландец очутится внутри куба, он обратит внимание на неожиданное явление. Каждый квадрат ведет в другой квадрат. «Внешней стороны» у куба нет. Всякий раз, когда флатландец переходит из одного квадрата в другой, он плавно, даже не замечая этого, сгибается под углом 90° в третьем измерении и попадает в следующий квадрат. Снаружи этот дом выглядит как самый обычный квадрат, но тот, кто войдет в него, обнаружит беспорядочное нагромождение квадратов, каждый из которых немыслимым образом ведет в следующий. Вошедшему покажется невероятным то, что этот единственный квадрат способен вместить шесть других квадратов.
Якоб Броновски «Восхождение человека» (Jacob Bronowski, The Ascent of Man, Boston: Little, Brown. 1974), c. 247.
Процитировано в: Абрахам Пайс «Научная деятельность и жизнь Альберта Эйнштейна» (Abraham Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford: Oxford University Press, 1982), c. 131.
Пассажирам поезда показалось бы, что поезд стоит, а станция метро приближается к нему. Они увидели бы, что платформа и все стоящие на ней сложены гармошкой. Таким образом, мы приходим к противоречию: пассажиры в поезде и люди на станции считают друг друга подвергнувшимися сжатию. Разрешение этого парадокса представляется несколько каверзным. — Прим. авт.
Как правило, нелепо полагать, что из двух человек каждый может быть выше другого. Но в данной ситуации мы видим двух людей, каждый из которых прав, считая второго подвергшимся сжатию. На самом деле противоречия тут нет, так как речь идет о времени, в ходе которого производится измерение, а время, как и пространство, в данном случае искажено. В частности, события, которые выглядят одновременными в одной системе отсчета, не являются одновременными, если рассматривать их в другой системе отсчета.
К примеру, допустим, что люди на платформе достают линейку и, пока поезд проезжает мимо, роняют ее на платформу. Пока движется поезд, они бросают линейку так, чтобы оба ее конца ударились о платформу одновременно. Таким образом они могут доказать, что вся длина сжатого поезда от переднего до заднего вагона составляет всего один фут (30 см).
А теперь рассмотрим тот же процесс измерения с точки зрения пассажиров, находящихся в этом поезде. Они считают, что пребывают в состоянии покоя, и видят, как к ним приближается сжатая станция подземки, на платформу которой сжатый человек собирается уронить сжатую линейку. Поначалу не верится, что такой короткой линейкой можно измерить длину целого поезда. Но при падении линейки ее концы достигают земли не одновременно. Один конец линейки касается ее как раз в тот момент, когда станция оказывается у переднего края поезда. И только когда станция двигается мимо всего поезда, второй конец линейки наконец ударяется оземь. Таким образом, одной и той же линейкой измеряется длина всего поезда и в той, и в другой системе отсчета.
Суть этого и многих других «парадоксов» теории относительности в том, что измерительный процесс занимает некоторое время, а пространство и время искажаются по-разному в разных системах отсчета.
Уравнения Максвелла выглядят так (мы принимаем с = 1):
Δ · Ε = ρ
Δ x B — д E / д t = j
Δ · B = 0
Δ x E + д B / д t = 0
Вторая и последняя строчка — векторные уравнения, представляющие три уравнения каждое. Следовательно, всего уравнений Максвелла восемь.
Можно переписать их в релятивистской форме. Если ввести тензор Максвелла F μν = д μA ν— д νA μ , тогда уравнения сведутся к единственному:
Читать дальше
Конец ознакомительного отрывка
Купить книгу