Словом, ключевое выражение 26–10 = 16. Оно означает, что, если мы компактифицируем 16 из первоначальных 26 измерений гетеротической струны, у нас появится 16-мерное компактное пространство с остаточной симметрией Е (8) x Е (8). Но согласно теории Калуцы-Клейна, частица, вынужденная существовать в компактифицированном пространстве, неизбежно наследует симметрию этого пространства. Значит, колебания струны должны преобразовываться согласно группе симметрии Е (8) x Е (8).
В итоге можно сделать вывод, что теория группы показывает: данная группа гораздо обширнее, чем группа симметрии, появляющаяся в Стандартной модели, следовательно, может включать Стандартную модель как малую подсистему десятимерной теории.
Несмотря на то что теория супергравитации определена в 11 измерениях, масштабы этой теории все равно недостаточны, чтобы вместить все взаимодействия частиц. Крупнейшая группа симметрии для супергравитации — 0(8), а она слишком мала, чтобы вместить симметрии Стандартной модели.
На первый взгляд кажется, что 11-мерная супергравитация обладает большим числом измерений, следовательно, большей симметрией, чем 10-мерная суперструна. Однако это лишь видимость, потому что гетеротическая струна начинается с компактификации 26-мерного пространства до уровня 10-мерного пространства, в итоге у нас остается 16 компактифицированных измерений, которые дают группу Е (8) x Е (8). Этого с избытком хватает для размещения Стандартной модели.
Виттен, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 102.
Отметим, что предлагались и другие альтернативные непертурбативные подходы к струнной теории, однако они не такие прогрессивные, как струнная теория поля. Один из самых смелых — «универсальное пространство модулей», попытка проанализировать свойства струнных поверхностей с бесконечным количеством отверстий в них. (К сожалению, никто не знает, как выполнять вычисления для поверхности такого рода.) Еще один вариант — метод ренормализационной группы, которым на данный момент можно воспроизводить только поверхности без отверстий (древовидные схемы). Есть также матричные модели, на данный момент определяемые не более чем для двух измерений.
Для того чтобы понять смысл этой таинственной двойки, вспомним, что у луча света два физических режима колебаний. Поляризованный свет может вибрировать, допустим, либо в горизонтальном, либо в вертикальном направлении. У релятивистского поля Максвелла A μ четыре компонента, где μ = 1, 2, 3, 4. Мы вправе вычесть два из этих четырех компонентов, пользуясь калибровочной симметрией уравнений Максвелла. Поскольку 4–2 = 2, первоначальные четыре поля Максвелла сведутся к двум. Так и релятивистская струна колеблется в 26 измерениях, но два из этих режимов колебания теряются, когда мы нарушаем симметрию струны, в итоге у нас остается 24 режима колебания, которые и фигурируют в функции Рамануджана.
Процитировано в: Годфри Харди «Рамануджан» (Godfrey Н. Hardy, Ramanujan, Cambridge: Cambridge University Press, 1940), c. 3.
Процитировано в: Джеймс Ньюмен «Мир математики» (James Newman, The World of Mathematics, Redmond, Wash.: Tempus Books, 1988), с. 1: 363.
Харди «Рамануджан», c. 9.
Харди «Рамануджан», с. 10.
Харди «Рамануджан», с. 11.
Харди «Рамануджан», с. 12.
Джонатан Борвейн и Питер Борвейн «Рамануджан и пи» (Jonathan Borwein and Peter Borwein, Ramanujan and Pi, Scientific American, February 1988), c. 112.
Дэвид Гросс, интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна (Paul Davies and J. Brown, ed., Superstrings: A Theory of Everything? Cambridge: Cambridge University Press, 1988), c. 147.
Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), c. 335.
Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), с. 333.
Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), с. 330.
Стивен Вайнберг «Мечты об окончательной теории» (Steven Weinberg, Dreams of a Final Theory, New York: Pantheon, 1992), c. 218–219.
Бозон Хиггса был открыт в 2012 г. коллаборациями ATLAS и CMS Большого адронного коллайдера, и Питер Хиггс получил свою заслуженную Нобелевскую премию годом позже. На сегодняшний день неясно, открыт ли бозон Хиггса Стандартной модели или это лишь первый из нескольких членов семейства, предсказываемых расширениями СМ. — Прим. науч. ред.
Читать дальше
Конец ознакомительного отрывка
Купить книгу