Kip Thorne - The Science of Interstellar

Здесь есть возможность читать онлайн «Kip Thorne - The Science of Interstellar» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: New York, Год выпуска: 2014, ISBN: 2014, Издательство: W. W. Norton & Company, Жанр: Физика, sci_cosmos, sci_popular, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Science of Interstellar: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Science of Interstellar»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A journey through the otherworldly science behind Christopher Nolan’s highly anticipated film,
, from executive producer and theoretical physicist Kip Thorne. Interstellar
The Science of Interstellar
Interstellar
Interstellar
[200 color illustrations]
https://www.youtube.com/watch?v=jQye2XkvDpo

The Science of Interstellar — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Science of Interstellar», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Fig 1610 The Bicep2 instrument built by Jamie Bocks team that discovered - фото 145
Fig. 16.10. The Bicep2 instrument, built by Jamie Bock’s team, that discovered the imprint of primordial gravitational waves. Bicep2, at the South Pole, is here shown at twilight, which occurs only twice a year at the South Pole. It is surrounded by a shield to protect it from radiation from the surrounding ice sheet. The upper right inset shows the measured imprint on the CMB: a polarization pattern. The CMB’s electric field points along the short dashed directions.

It was a fantastic discovery, but with a cautionary note: the imprint that Jamie and his team found might possibly be due to something else and not gravitational waves. As this book goes to press, intense efforts are underway to find out for sure.

If the imprint is really due to gravitational waves from the big bang, then this is the type of cosmological discovery that comes along perhaps once every fifty years. It brings us a glimpse of the universe a trillionth of a trillionth of a trillionth of a second after the universe’s birth. It confirms theorists’ prediction that the expansion of the universe at that early moment was exceedingly fast, “inflationarily fast” in cosmologists’ jargon. It ushers in a whole new era for cosmology.

Having indulged my passion for gravitational waves, having seen how they could be used to discover Interstellar ’s wormhole—and having explored the properties of wormholes, especially Interstellar ’s—I now take you on a tour of the other side of the Interstellar wormhole. A tour of Miller’s planet, Mann’s planet, and the Endurance , which carries Cooper there.

V

EXPLORING GARGANTUA’S ENVIRONS

17

Miller’s Planet

картинка 146

The first planet that Cooper and his crew visit is Miller’s. The most impressive things about this planet are the extreme slowing of time there, gigantic water waves, and huge tidal gravity. All three are related, and arise from the planet’s closeness to Gargantua.

The Planet’s Orbit

In my interpretation of Interstellar ’s science, Miller’s planet is at the blue location in Figure 17.1, very close to Gargantua’s horizon. (See Chapters 6 and 7.)

Fig 171 The warped space around Gargantua as seen from the bulk with one - фото 147
Fig. 17.1. The warped space around Gargantua as seen from the bulk, with one space dimension omitted. Also, the orbits of Miller’s planet and the Endurance , parked and waiting for the crew to return.

Space there is warped like the surface of a cylinder. In the figure, the cylinder’s cross sections are circles whose circumferences don’t change as we move nearer to or farther from Gargantua. In reality, when we restore the missing dimension, the cross sections are spheroids, whose circumferences don’t change as we move nearer or farther.

So why is this location different from any other on the cylinder? What makes this location special?

The key to the answer is the warping of time, which does not show up in Figure 17.1. Time slows near Gargantua, and the slowing becomes more extreme as we get closer and closer to Gargantua’s event horizon. Therefore, according to Einstein’s law of time warps (Chapter 4), gravity becomes ultrastrong as we near the horizon. The red curve in Figure 17.2, which depicts the strength of the gravitational force, turns sharply upward. By contrast, the centrifugal force that the planet feels (the blue curve) has a more gradually changing slope. As a result, the two curves cross at two locations. There the planet can travel around Gargantua with the outward centrifugal force balancing the inward gravitational force.

Fig 172 The gravitational and centrifugal forces on Millers planet At the - фото 148
Fig. 17.2. The gravitational and centrifugal forces on Miller’s planet.

At the inner balance point, the planet’s orbit is unstable: If the planet gets pushed outward a tiny bit (for example, by the gravity of some passing comet), the centrifugal force wins the competition and pushes the planet further outward. If the planet is pushed inward, the gravitational force wins and the planet is pulled into Gargantua. This means Miller’s planet can’t live for long at the inner balance point.

The outer balance point, by contrast, is stable: If Miller’s planet is there and gets pushed outward, gravity wins the competition and pulls the planet back in. If the planet gets pushed inward, centrifugal forces win and push it back out. So this is where Miller’s planet lives, in my interpretation of Interstellar . [31] The centrifugal force depends on the planet’s orbital angular momentum, a measure of its orbital speed that is constant along its orbit (Chapter 10). In plotting how the force changes with distance from Gargantua in Figure 17.2, I hold that angular momentum constant. If the angular momentum were a bit smaller than the amount Miller’s planet actually has, then the centrifugal force would everywhere be smaller, and the two curves in Figure 17.2 would not cross. There would be no balance point, and the planet would fall into Gargantua. That’s why the location of Miller’s planet in Figures 17.1 and 17.2 is the closest to Gargantua that the planet can stably live—the location I want, in order to get maximum slowing of time. For more details see Some Technical Notes at the end of this book.

The Slowing of Time, and Tidal Gravity

Among all stable, circular orbits around Gargantua, the orbit of Miller’s planet is the closest to the black hole. This means it’s the orbit with the maximum slowing of time. Seven years on Earth is one hour on Miller’s planet. Time flows sixty thousand times more slowly there than on Earth! This is what Christopher Nolan wanted for his movie.

But being so close to Gargantua, in my interpretation of the movie, Miller’s planet is subjected to enormous tidal gravity, so enormous that Gargantua’s tidal forces almost tear the planet apart (Chapter 6). Almost, but not quite. Instead, they simply deform the planet. Deform it greatly (Figure 17.3). It bulges strongly toward and away from Gargantua.

Fig 173 Tidal deformation of Millers planet If Millers planet were to - фото 149
Fig. 17.3. Tidal deformation of Miller’s planet.

If Miller’s planet were to rotate relative to Gargantua (if it didn’t keep the same face toward Gargantua at all times), then as seen by the planet, the tidal forces would rotate. First the planet would be crushed east-west and stretched north-south. Then, after a quarter rotation, the crush would be north-south and the stretch east-west. These crushes and stretches would be enormous compared to the strength of the planet’s mantle (its solid outer layers). The mantle would be pulverized, and then friction would heat it and melt it, making the whole planet red hot.

That’s not at all what Miller’s planet looks like! So the conclusion is clear: In my science interpretation, the planet must always keep the same face pointing toward Gargantua (Figure 17.4), or nearly so (as I discuss later).

Fig 174 The orbital motion and spin of Millers planet relative to distant - фото 150
Fig. 17.4. The orbital motion and spin of Miller’s planet relative to distant stars. The red spot on the planet’s surface and the tidal bulge always face Gargantua.

The Whirl of Space

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Science of Interstellar»

Представляем Вашему вниманию похожие книги на «The Science of Interstellar» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Science of Interstellar»

Обсуждение, отзывы о книге «The Science of Interstellar» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x