Переход к парадоксальным неэвклидовым соотношениям от традиционных эвклидовых соотношений, рассматриваемый как физический переход, изменение метрики, неэвклидовый характер метрики, отождествленный с гравитационным полем, лежит в основе общей теории относительности. Такой переход не был растворением музыки в алгебре, он был скорее превращением алгебры в музыку, конечно, в несколько переносном смысле, аналогичном кеплеровой «музыке сфер».
Эмоциональное содержание оптимизма неотделимо от его метрического выражения. Чувство уверенности в грядущей реализации цели невозможно без количественного расчета и, поскольку речь идет о структуре производства, без метрики.
Но здесь нас подстерегает следующая трудность. Метрика — все методы определения расстояний по разности координат, по-видимому, легко может быть введена, когда речь идет о событиях, которые можно представить в виде точек некоторого абстрактного га-мерного пространства.
Читатель помнит: в главе ««Знаю как» и «знаю где»» уже было введено га-мерное пространство экономических структур и (n+1) — мерное пространство динамики этих структур. Все же следует о них напомнить. Если речь идет, например, о пятидесяти отраслях (n = 50), то точка, соответствующая данной структуре, — это точка 50-мерного пространства структур, определенная 50 координатами, из которых каждая измеряет, например, вложения в одну из отраслей или продукцию отрасли. Переход от одной структуры к другой измеряется вектором, соединяющим две такие точки. Структурные изменения, вызванные научными и техническими открытиями, — основной экономический эффект, который необходимо измерить, чтобы узнать, какая динамика структуры производства является оптимальной для достижения цели, для того чтобы производительность труда и ее производные — скорость и ускорение ее уровня — были в целом наибольшими. Из таких векторов складывается кривая динамики структуры (уже не в 50-мерном, вообще не в n-мерном, а в (n+1) — мерном пространстве: мы вводим помимо n структурных координат (п+ 1) — е измерение, время). Такая кривая — мировая линия структуры — должна давать наибольшее значение фундаментального индекса Q =/(Р, Р', Р'' ).
Можно предвидеть дальнейшее направление этой кривой, если предположить, что кривизна мировой линии остается неизменной. И даже если она меняется, если возникают иные соотношения между скоростями отдельных отраслей, иные динамические балансы, можно определить результирующее искривление мировой линии, предвидеть дальнейшую эволюцию структуры. Но такая возможность сохраняется, когда изменения в темпах отдельных отраслей вызваны техническими открытиями, приведшими к ускоренному расширению той или иной отрасли. Прогнозы такого расширения мы назвали прогнозами рассудка. А прогнозы разума? В этих более радикальных прогнозах меняется сама зависимость экономической динамики от приращений координат, от изменений структуры. Меняется формула, связывающая каждое бесконечно малое приращение вектора в (п+1 ) — пространстве с бесконечно малыми приращениями координат. Такое изменение метрики может быть представлено как искривление уже не мировой линии в (n+1) — пространстве, а как искривление самого этого пространства.
Здесь нужны некоторые пояснения, которые лучше всего высказать в виде физико-экономических аналогий. Кстати, если уже написаны эти слова: «физико-экономические аналогии», можно сказать несколько слов об их допустимости.
Они существовали и в классической политической экономии. Адам Смит, иногда в неявной форме, а чаще в явной, вводил в экономическую теорию понятия классической физики: силу, равновесие, импульс. Сейчас такие семантические сближения включают неклассические понятия неопределенности переменных и другие, в их числе— искривление пространства.
Представим себе движение частицы в пространстве с нарушенной эвклидовой метрикой, в неэвклидовом, иначе говоря искривленном, пространстве. Мы хотим выделить воздействие кривизны пространства на движение частицы и рассмотреть зависимость этого движения от некоторых известных нам полей, например зависимость движения электрически заряженной частицы вблизи сильного заряда. Для этого мы берем полную производную, определяющую изменение состояния движения частицы в данной точке (например, ускорение частицы), и вычитаем из нее производную, показывающую, как изменилось состояние частицы под влиянием кривизны пространства. Такая разность называется ковариантной производной, она является мерой изменения состояния движения, не зависящего от кривизны пространства.
Читать дальше