В очерке, посвященном перспективам кибернетики, говорилось, что преобразующее воздействие прикладной математики на цивилизацию включает преобразование характера труда: сочетание математизации науки и управления с применением электронных приборов позволяет изменить содержание труда, увеличить его творческие, реорганизующие потенции. Таким образом, математизация лежит в том фарватере современной науки, который ведет к реализации интегральной цели науки — преобразованию субъекта, содержания и объекта труда. В этой, третьей, части книги в интегральную цель была включена еще одна задача — преобразование структуры труда, его направления, его распределения по отраслям. Это собственно экономическая задача. Каково значение прикладной математики для ее решения?
Речь, очевидно, идет об эконометрии. Нельзя думать, что внедрение в экономическую мысль метрических понятий, методов измерения, математических аналогий меняет форму экономического анализа, не трансформируя его содержания и выводов. Конечно, нож и вилка не меняют и во всяком случае не заменяют бифштекс, и лучше съесть его без ножа и вилки, чем ограничить обед этими предметами. Но пример журавля и лисы показывает, что иногда обед становится недоступным без соответствующей его содержанию формы. Это, вообще говоря, следует из стихотворения Гёте, адресованного Альбрехту фон Галлеру («природа не состоит из скорлупы и ядра»). В случае эконометрии содержательность математической формы вытекает из следующих соображений, относящихся, впрочем, только к одной стороне дела — к связи содержательной эконометрии прогнозов с неклассической наукой.
Нестабильность этой науки делает, как нам теперь известно, непосредственным источником экономических сдвигов не только применение физических схем, их техническое воплощение в конструкциях, но и сами эти схемы. Благодаря своему сравнительно общему характеру физические схемы преобразуют сразу многие отрасли производства или свободно мигрируют из одной отрасли в другую. Поэтому в прогнозах каждой отрасли, даже каждого крупного предприятия обязательно фигурирует информация о производстве в целом.
Из нелинейного характера неклассических экономических прогнозов, из невозможности получить общий прогноз, суммируя частные, вытекает необходимость вводить информацию о производстве в целом в каждый частный прогноз. Это информация прежде всего о структуре производства и ее динамике как прогнозируемом результате каждого крупного открытия, изменяющего техникоэкономические показатели и межотраслевые пропорции. Но структурная информация — это метрическая информация, Она должна включать в прогнозы принципиально измеримые данные о межотраслевых пропорциях, а в планах— абсолютные размеры вложений в отрасли и абсолютные показатели их эффекта. Поэтому возможность метрического выражения прогнозируемых экономических сдвигов, их эконометризируемостъ — условие их реализации . Соответственно прогнозы развития самой эконометрии (а поскольку она должна пользоваться новыми, пока еще не полученными алгоритмами, то и математики в целом) — необходимое условие или часть экономических прогнозов.
Оптимистических прогнозов. Таких, которые связаны с целью, поставленной обществом, делающей деятельность общества целесообразной. Обладающих определенными коэффициентами корреляции с целью, позволяющими выбрать наиболее приближающийся к цели оптимальный прогноз. Но тогда и сама цель должна обладать некоторым метрическим коэффициентом. И, более того, оптимизм, уверенность в достижении цели, тогда обладает метрическим коэффициентом, вероятностью реализации цели.
Здесь — небольшое отступление от проблем метрики экономических прогнозов. Возможно ли, вообще говоря, выразить эмоцию (а оптимизм, какой бы гносеологический, научно-прогнозный, экономический и эконометрический смысл мы ему ни придавали, остается эмоцией), возможно ли ее выразить количественными показателями? Нет ли здесь чего-то от Сальери — причем к алгебре сводится даже не музыка, а то, что выражается музыкой и иначе, например словами, и не может быть выражено?
У Сент-Экзюпери есть одно очень интересное замечание, вложенное в уста Маленького принца. Для ребенка интересы взрослых кажутся странными: взрослые интересуются количественными определениями, им нужно знать, сколько человеку лет, сколько он зарабатывает, а в какие игры он любит играть — это им безразлично. Наука, и не только наука, требует некоторого приближения к «детским» интересам. Об этом говорил Эйнштейн в отношении науки, а в других отношениях — евангелисты, вложившие в уста своего героя формулу: «… ежели не будете, как дети…» Но дети, вслед за Алисой в стране чудес, вовсе не против счета; только этот счет должен быть парадоксальным. Именно такой переход от традиционных математических соотношений к парадоксальным и был реализован в теории, которую Эйнштейн считал результатом «детских» интересов (он говорил, что пришел к теории относительности потому, что сохранил Детский интерес к фундаментальным проблемам до такого возраста, когда мог кое-что сделать для их решения).
Читать дальше