Выход из положения может состоять в более тесном сращивании перспективных для развития техники и производства фундаментальных и прикладных исследований. Подчас считают, что выход в этой ситуации дает кластерная организация науки и производства. Примеры эффективных кластеров весьма убедительны. Тем не менее, есть и другие средства соединения науки и производства. Для этого многие фундаментальные направления науки и соответствующие им организационные структуры должны встать на путь развития собственного инженерно-технического комплекса, создания опытных производств. Речь идет, следовательно, о преодолении своеобразной «стерильности» фундаментальной науки, об отказе от ее ориентации на выпуск только знаниевой продукции. Продвижение в данном направлении должно привести к формированию особой инфраструктуры фундаментальных исследований, например, межотраслевых органов, способных осуществлять технические работы перспективного плана по заявкам фундаментальных научных учреждений.
В разработке проблемы оптимизации функционирования системы «наука-техника» необходимо иметь в виду, что ее решение зависит не только от совершенствования управления объективной организацией данной системы. Ведущая роль в повышении эффективности научно-технической деятельности принадлежит субъективному элементу, т.е. человеческому фактору.
Вопросы, связанные с активизацией человеческого потенциала научно-технической деятельности, имеют сложный характер. Остановлюсь лишь на двух заслуживающих внимания моментах. Первый из них касается совершенствования подготовки научных кадров. Сегодня вызывает неудовлетворенность чрезмерная длительность периода обучения, который проходит научный работник для достижения оптимальной квалификации. Ситуация обостряется в силу того, что достижение высокой квалификации отодвигается нередко на поздний возрастной период, когда у ученого начинается спад творческой активности.
Преодоление такого положения ищут сегодня на путях рационального сочетания специальной и фундаментальной подготовки научных кадров. Можно считать доказанным, что увеличение доли фундаментальных знаний дает специалистам более широкие возможности опереться на емкие формы и методы усвоения выработанной ранее научной информации, помогает им быстрее адаптироваться к постановке новых задач в науке и технике [20]. Однако, следует учитывать и отрицательные моменты фундаментализации образования. Дело заключается в том, что фундаментальные науки опираются на весьма абстрактные схемы мышления, которые зачастую должны быть существенно конкретизированы и модифицированы, чтобы эффективно работать в прикладных исследованиях. Способы такой модификации являются продуктом особого творческого процесса. Вовлечение в него молодых ученых является весьма перспективным с точки зрения ускорения подготовки новой научной смены. Разумеется, недостатки узкоспециального образования должны преодолеваться и другими способами. Представляется полезным, скажем, усиление методологической подготовки кадров исследователей. Особое значение при этом приобретает включение в учебный процесс освоение междисциплинарных проблем науки и изучение методологии комплексных междисциплинарных исследований.
Второй момент, на который следует указать, связан с расширением профиля подготовки технических кадров. Именно эта подготовка отвечает потребностям современного производства в высоких темпах обновления техники и технологии, в обеспечении технического прогресса путем развития пограничных и стыковых направлений технического обновления производства. Но потребность в широкопрофильной подготовке специалистов толкает к пересмотру коренных пунктов организации технического образования. Ключевым моментом здесь является расширение базы подготовки инженеров и фиксация этой новой базы в программах вузовского обучения. Думается, что попытки априорно обозначить эту базу не имеют перспективы. Ответ следует искать с помощью долгосрочных прогнозов, учитывающих изменчивость в конкретных областях научно-технического прогресса, а также способных выявить прочные, устойчивые достижения в соответствующих сферах. На основании подобных прогнозов можно выделить базовые теории и концепции, определяющие развитие крупных сфер инженерной деятельности на относительно долгую перспективу. И лишь отсюда должны проистекать требования к современным программам вузовской подготовки инженеров.
Читать дальше