Г Гутнер: Онтология математического дискурса

Здесь есть возможность читать онлайн «Г Гутнер: Онтология математического дискурса» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Философия / на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

libcat.ru: книга без обложки
  • Название:
    Онтология математического дискурса
  • Автор:
  • Жанр:
    Философия / на русском языке
  • Язык:
    Русский
  • Рейтинг книги:
    5 / 5
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5
  • Избранное:
    Добавить книгу в закладки

Онтология математического дискурса: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Онтология математического дискурса»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Г Гутнер: другие книги автора


Кто написал Онтология математического дискурса? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

Онтология математического дискурса — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система автоматического сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Онтология математического дискурса», без необходимости каждый раз заново искать на чём Вы остановились. Не бойтесь закрыть страницу, как только Вы зайдёте на неё снова — увидите то же место, на котором закончили чтение.

Гутнер Г Б

Онтология математического дискурса

Г.Б.Гутнер

Онтология математического дискурса

Введение Глава 1. Рассмотрение онтологического статуса предметов математики в некоторых философских системах   1 Платон и Аристотель: определение сущности   2 Сущность как мыслящая субстанция   3 Математическое существование в философии Канта. Предварительное рассмотрение Глава 2. Интерпретации существования в математике   1 Основные стратегии доказательства существования   2 Концепция существования у Кантора   3 Брауэровская интерпретация существования   4 Интерпретация существования в философии математики Гильберта Глава 3. Существование в геометрии. Анализ категорий модальности   1 Возможное и действительное в математике   2 Структура доказательства у Евклида в связи с категориями модальности   3 Необходимость и случайность   4 Возможное и действительное в отношении ко времени   5 Дискретность и непрерывность в структуре дискурса   6 Различие и тождество в дискурсе  7 Трудности рассматриваемого подхода и традиционные философские проблемы Глава 4. Именование и существование в структуре дискурса   1 Имя и действительность   2 Математический дискурс, основанный на именовании   3 Дискурс имен и неконструктивные "объекты" Заключение Библиография

---------------------------------------------------------------------------

Введение

Практически в любом математическом рассуждении решается проблема существования какого-либо предмета. Это можно принять, прежде всего, как своего рода эмпирический факт, поскольку содержанием значительной части теорем любого раздела математики является утверждение о существовании. Говорят о существовании нужного построения (в геометрии), о существовании корней уравнения (в алгебре), о существовании предела последовательности (в математическом анализе) - примеры можно множить безгранично. Однако нетрудно заметить, что даже в трех приведенных примерах смысл слова "существует" - не один и тот же. Прямая, проходящая перпендикулярно данному отрезку через его середину, существует потому, что может быть построена в соответствии с предписанными рядом геометрических утверждений правилами. Предел произвольной монотонной ограниченной последовательности не может быть построен в результате какой-либо процедуры, однако он также существует, хотя вывод о его существовании делается совершенно на иных основаниях. Каждый математик, по-видимому, так или иначе отвечает для себя на вопрос о том, как следует определить понятие существования для математических объектов. Во время фундаментальных дискуссий об основаниях математики, проходивших в начале XX века, эта проблема обсуждалась многими и мы обсудим ряд концепций существования во 2-й главе нашей работы. Сейчас же заметим, что вопрос о том, как понимать существование в математике прямо связан с тем, как доказывается существование математического объекта.

Названная проблема решается, как правило, в рамках математики. Однако можно поставить вопрос о существовании математических объектов иначе. Можно спросить, какова природа математических объектов или каков их онтологический статус. Их можно считать самостоятельными интеллигибельными сущностями, абстрагированными от чувственно воспринимаемых вещей свойствами, чистыми конструкциями ума и т.д. Наверное каждая философская система попыталась определить свое отношение к математике и выяснить как именно существуют и существуют ли вообще ее предметы.

Вопрос об онтологическом статусе - это также вопрос о том каков смысл слова "существует" в применении к математическому объекту. Однако в философии этот вопрос должен быть понят иначе, чем в математике. Философской проблемой в данном случае является, на наш взгляд, отношение рассуждения (в частности математического рассуждения) к своему предмету. Исследованию подлежит вопрос о том, как постигается или как создается предмет в ходе рассуждения и в силу каких обстоятельств предмет может быть определен в рассуждении как существующий.

Можно выделить два альтернативных подхода к рассмотрению онтологического статуса предмета (в частности, предмета математики). Предмет можно рассматривать как сущность, обладающую определенными свойствами, или как элемент в определенной системе отношений. Поэтому изучение природы математических объектов можно проводить в рамках, заданных двумя, в определенном смысле конкурирующими, категориями - сущности и структуры. Дискуссия между сторонниками двух связанных с этими категориями подходов весьма типичная черта жизни философского и математического сообщества как в прошлом, так и сейчас. Ниже мы попытаемся обосновать это утверждение рядом ссылок.

Читать дальше

Похожие книги на «Онтология математического дискурса»

Представляем Вашему вниманию похожие книги на «Онтология математического дискурса» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «Онтология математического дискурса»

Обсуждение, отзывы о книге «Онтология математического дискурса» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.