Г Гутнер - Онтология математического дискурса

Здесь есть возможность читать онлайн «Г Гутнер - Онтология математического дискурса» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Онтология математического дискурса: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Онтология математического дискурса»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Онтология математического дискурса — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Онтология математического дискурса», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нам осталось рассмотреть проблему общего в отношении введенных категорий. Всякая конструкция (объект или дискурс) есть нечто действительное, локализованное в пространстве и времени. Но с другой стороны конструкция воспроизводима в любое время и в любом месте. Причем воспроизведение не означает копирования. Воспроизведение означает построение другой подобной конструкции - в ней могут быть использованы другие имена, другие геометрические образы, но сохраняются отношения между элементами, т.е. между тем, куда подставляются имена и образы. Эту совокупность отношений (систему пустых мест) мы называем структурой. Последняя может быть выражена в виде правила или краткой формулы, даже в виде одного слова, устойчиво обозначающего именно эту систему отношений. Такое краткое выражение структуры уместно назвать понятием. Как понятие так и структура всегда лишь возможны. Они актуализируются в определяемых ими конструкциях.

Понятие структуры достаточно часто используется в лингвистике, причем его употребление достаточно близко к нашему. В [53], например, устанавливается связь между "структурой" и "системой", которой вполне соответствует установленное нами отношение между структурой и конструкцией. "Под системой понимается единое целое, доминирующее над своими частями и состоящее из элементов и связывающих их отношений. Совокупность отношений между элементами системы образует ее структуру. Правомерно говорить поэтому о структуре системы. Совокупность структуры и элементов составляют систему" ([53], c. 228).

Важно отметить некоторую странность этой категории. Она занимает как бы срединное положение между понятием и конструкцией. Но два последние имеют явное выражение. Понятие может быть задано в виде правила или суждения, конструкция предъявлена в виде созерцания. Между тем структура сама по себе не выражается никак. Очевидна близость между ней и кантовской трансцендентальной схемой, хотя мы воздержались бы от отождествления этих понятий и чуть ниже объясним основания для этого.

Мы говорили о том, что конструкция неуловима как целое. Сам процесс конструирования есть процесс актуализации частей конструкции последовательность синтетических актов способности воображения. Созданная конструкция обращается в след, а потому понимание предмета как целого оказывается весьма проблематичным. Мы разбирали эту проблему в третьей главе и указали, что представление о целостности предмета возможно лишь потому, что он конструируется сообразно трансцендентальной схеме. В нашем рассуждении мы сопоставили понятию схемы понятие структуры. Всякий дискурс осуществляется так, что его структура (или структура конструируемого объекта) угадывается рефлектирующей способностью суждения. Каждый элемент конструкции создается так, что его отношения с другими элементами становятся сообразны найденной структуре. Структура априорна в том смысле, что предшествует дискурсу и присутствует в каждом конструктивном акте, т.е. при создании каждого элемента. Синтетический акт есть, в конечном счете, установление точки. Но каждая точка вписана в некоторую структуру. Последняя подразумевается независимо от точки. Она схватывается в каждый момент совершения синтеза. В этом состоит событие. Оно содержательно отлично от синтетического акта тем, что синтез есть присоединение к конструкции очередного элемента в определенный (точнее, определяемый им) момент времени. Событие, состоящее в схватывании структуры, означает понимание.

Событие может и не сопровождаться никаким синтетическим актом. Таково, например, событие именования. Когда дается имя идеальному элементу, схватывается структура всего дискурса, но не происходит никакого синтеза. Этот синтез лишь предвидится - он будет произведен в будущем с использованием введенного сейчас имени.

Структура разворачивается в конструкцию и это развертывание есть внешнее выражение происшедшего понимания. Знание структуры может выразиться двумя способами: формулированием общего правила (понятия) или построением единичной конструкции. И то, и другое может быть свидетельством понимания (т.е. происшедшего ранее события - схватывания структуры), но такое свидетельство не является абсолютно надежным. Можно, не понимая и формулировать, и конструировать. Впрочем едва ли можно понять, не выразив свое понимание в конструировании.(См. примечание 1) Последнее, как темпоральное развертывание структуры, можно назвать следом события или рассказом о событии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Онтология математического дискурса»

Представляем Вашему вниманию похожие книги на «Онтология математического дискурса» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Виктор Пелевин
libcat.ru: книга без обложки
Игорь Футымский
Отзывы о книге «Онтология математического дискурса»

Обсуждение, отзывы о книге «Онтология математического дискурса» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x